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Probabilistic Linear Inversion of Reflection Seismic Data

Abstract

Seismic acquisition is the major provider of geophysical data for large-scale
hydrocarbon exploration purposes. Large quantities of data-rich seismic surveys
hampers a proper integration of geophysical data and geological prior knowledge,
due to computational demands. To remedy this, simplified and approximate
models, andmathematically convenient priors are applied to allow
computationally faster solutions. It is in particular difficult to obtain reliable
uncertainty estimates of the physical parameters in the subsurface using
linear-least squares solutions. These models present a trade-off between
obtaining a realistic depiction of the subsurface and having an analytic
(computationally efficient) solution to the inverse problem. This thesis addresses
this issue and presents newmethodologies and work-flows, which could
potentially enable a better description of the subsurface. The work is manifested
in three main directions.

Firstly, errors from using a simplified linear forward are considered. The work
is split between linear assumptions of the non-linear Zoeppritz equations and
errors arising during processing of seismic data. Errors from both sources are
deemed significant in seismic inversion, and in both cases, the error is estimated
and described with a Gaussian distribution. This enables more trustworthy
posterior solutions.

Secondly, non-stationarity in the Gaussian prior distribution is considered.
Using localizedmarginal maximum likelihood estimators, a non-stationary global
measure of the variance is obtained. This estimate is used as a plug-in variance in
the prior distribution. Improved posterior results are obtained using the
non-stationary estimate compared to a traditional stationary measure.

Finally, the strategy of inferring the noise model as part of the inversion result is
investigated. It is demonstrated that the shape of the noise is decisive for the
reliability of the obtained posterior solutions. In all three presented work areas,
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the results indicate that a proper description of the noise on the data is vital in
bridging the gap between computationally feasible solutions and realistic
posterior distributions. A better description and accounting for modeling errors
can potentially significantly improve currently available linear probabilistic
inversionmethods.
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Probabilistisk lineær inversion af reflektionsseismiske data

Dansk Resumé

Seismisk dataindsamling er den primære geofysiske datakilde ved stor-skala
efterforskning af hydrokarboner. Beregningsmæssige vanskeligheder ved store
mængder af seismisk data hæmmer en passende integration af seismisk data med
forudgående geologisk viden. Dette problem kan afhjælpes ved at benytte
approksimative modeller og matematisk praktiske priorfordelinger til at opnå
beregningslette løsninger. Det er i særdeleshed vanskeligt at opnå pålidelige
usikkerhedsestimater for de fysiske parametre i undergrunden ved brug af
mindste-kvadraters metoder. Brugen af mindste-kvadraters metoder er dermed
en afvejning mellem realisme i inversionsresultaterne ogmuligheden for at have
en analytisk løsning. Denne afhandling beskæftiger sig med denne
problemstilling og præsenterer nye metoder og arbejdsgange til en bedre
afbildning af undergrunden. Arbejdet manifesterer sig i tre hovedretninger.

For det første undersøges fejl, der opstår som følge af brugen af simplificerede
lineære modeller til at løse det direkte problem. Dette arbejde er delt mellem
linæariserede versioner af de ikke-lineære Zoeppritz-ligninger og fejl der opstår
som følge af processering af seismisk data. I begge tilfælde er fejlen estimeret og
beskrevet med en Gaussisk fordeling, hvilket muliggør mere troværdige løsninger
af det inverse problem.

For det andet, behandles ikke-stationaritet i Gaussiske priorfordelinger. Ved
brug af lokale maksimum sandsynlighedsestimatorer kan et globalt
ikke-stationært mål for variansen opnås. Dette mål bruges som et estimat for
variansen i priorfordelingen. Ved at benytte dette estimat opnås mere troværdige
løsninger til det inverse problem endmed en traditionel stationær varians.

Slutteligt afprøves strategien om at udlede støj-modellen som en del af
inversionsalgoritmen. Det er her demonstreret, hvorledes formen på støjen har
betydning for pålideligheden af de opnåede inversionsresultater. Resultaterne, for
alle tre arbejdsområder indikerer, at en passende beskrivelse af støjen på data er
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altafgørende for at bygge bromellem de beregningslette løsninger og realistiske
inversionsresultater. En bedre beskrivelse af støjen, hvor den samtidig bliver
håndteret i inversionen, vil potentielt kunne forbedre nuværende lineære
probabilistiske inversionsmetoder signifikant.
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Preface

The present Ph.D. thesis entitled ”Probabilistic Linear Inversion of Reflection

Seismic Data” finalize a 3-year Ph.D. program, and is part of the requirements to

complete a Ph.D. degree at the University of Copenhagen. The work has been

carried out at the InverseModeling and Geostatistics Project (IMGP) group at

the Niels Bohr Institute (NBI), University of Copenhagen. The initial title for the

Ph.D. project was Probabilistic Seismic Prospect Assessment (PSPA) and has been

carried out in the period between 2015 and 2018. The Ph.D. project is funded by

the Innovation Foundation Denmark, grant number: 53-2014-3. The original

project formulation was to develop software that could provide an effective tool

when large amounts of geophysical data from the subsurface are pieced together.

The PSPA project is split between two parties, the IMGP at NBI andQeye Labs,

which is a small seismic inversion contractor based in Copenhagen. Qeye Labs’

role in the project is to provide software and practical experience with inversion

of seismic data on large scale problems. The objective for the IMGP group is to

develop numerical methods and algorithms for probabilistic inversion. The work
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carried out through this Ph.D. study falls in the latter category.

Themain focus of this Ph.D. study has been to investigate modeling errors in

seismic AVO data and their effect on probabilistic inversion. During my four

months abroad at the Norwegian Science and Technology University (NTNU),

the work was extended to cover work with non-stationarity in the variance of

physical parameters as well. This work was done in collaboration with professor

Henning Omre. The seismic data and scenarios for this Ph.D. are based on

exploration geophysics on kilometer-scale, which is mainly of interest for the oil

and gas industry.

Most computations have been carried out on a conventional 3,1 GHz Intel

Core i7 laptop with 16 GB 1867MHzDDR3 RAM.Heavier computational

calculations, for example running multiple Finite Differences modeling and

Monte-Carlo based inversion, have been performed on local in-house

workstations.

The thesis consist of a summary of the work over the course of the Ph.D.

project and six appendices with scientific work either submitted or currently

undergoing review in geophysical journals. Appendix H.1 is an unaccepted

expanded abstract for the Society of Exploration Geophyiscs (SEG) annual

meeting in 2016. This work, along with a conference abstract for the GEOSTATS

conference in 2016 (Appendix H.2), would later create the basis for Appendix

H.4. Appendices H.3-H.5 are reviewed and published in SEG annual meeting

2017 proceedings, GEOPHYSICS and European Association for Geoscientists

and Engineers (EAGE) annual meeting 2018 proceedings respectively. Appendix

H.6 is written in collaboration with Henning Omre fromNTNU and is

submitted to GEOPHYSICS, currently undergoing review.
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“I couldn’t claim that I was smarter than sixty-five other guys
- but the average of sixty-five other guys, certainly!”

Richard Feynman, Surely You’re Joking, Mr. Feynman!:
Adventures of a Curious Character

1
Introduction

Themost important job for a geophysicist is to obtain knowledge and

build reliable models of the Earth. Manymethods exist to acquire information

about the subsurface, but very few have been as successful and long-lasting as

seismic exploration and seismology in general. The popularity of seismology is

mainly rooted in the fact that it offers a unique source of information of

deep-lying features of the subsurface. Secondly, but almost equally important, it

provides a way of acquiring huge amounts of relatively high resolution data, that

cover large spatial distances. The second property has made seismic data the

main tool for hydrocarbon exploration purposes in the industry. The acquisition
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of seismic data is a topic in itself and will not be covered in this thesis, although a

brief overview of seismic acquisition will be given in the next section. The focus

of this thesis is instead how to build reliable models from the acquired seismic

data. Data does not usually contain direct measurements of the subsurface

parameters of interest. Instead, data will contain indirect information of the

subsurface parameters. One solution for building models of the subsurface

through indirect information is formulating the retrieval of a model as an inverse

problem. In this thesis, a probabilistic setting for inverse problems is used. A

probabilistic setting allows combining information from the indirect

measurements (i.e. data) with direct information of the subsurface (i.e. a priori

information) to build models. The aim of the thesis is to investigate some of the

main challenges involved with probabilistic linear inverse problems, namely

quantifying the effect (the error) of linearizing a non-linear problem and dealing

with non-stationarity of statistical properties of the subsurface and noise in

general. In the following chapter, a short introduction to seismic data is given

along with the processed entity called Amplitude Variation with Offset (AVO)

seismic data. Thereafter, a section follows describing the general inverse problem

and the typical approach to invert seismic data.

1.1 Seismic Data

The basic requirement for any seismic investigation of a medium (here the

subsurface) is merely a source that can generate a pulse of energy (the signal)

which travels through the medium. The acoustic properties of the medium

affects the arrival and appearance of the signal. The altered signal is recorded with

displacement sensitive microphones (the seismometers) as a time series of

2



displacement and/or pressure variation amplitudes. The seismic data thereby

provide information which allows one to infer knowledge on properties of the

medium. In the discipline of seismology the source is natural and is provided by

earthquakes that propagate through the entire Earth. The arrivals of different

wave phases have givenmuch insight to the internal structure of the planet.

Seismologic studies of the arrival of primary waves enabled the Danish

seismologist Inge Lehmann to discover the Earth’s inner core (Kölbl-Ebert,

2001). In general, three major investigation depths can be identified for different

exploration purposes. Besides the seismologic studies regarding the whole Earth,

two shallower depths can be identified. Onmeter-scale, very high-frequent

seismic data is gathered to investigate near-surface properties. These experiments

are usually conducted with the purpose of groundwater mapping and foundation

of buildings. On kilometer-scale, high-frequent data are gathered usually with the

aim of identifying hydrocarbons in the subsurface (i.e. exploration seismology).

In this thesis the main target will be seismic data on the kilometer-scale. The

inverse methods developed here can nevertheless be applied on different scales.

To obtain the high-frequent and precise data in exploration seismology, the

energy source must be more predictable than earthquakes and is instead

fabricated. This has over the years been done with everything from sledge

hammers to explosives (Miller et al., 1986). In Russia, some exploration studies

have even been carried out using smaller nuclear bombs as a source (Scheimer

and Borg, 1984). Seismic data can be gathered both on land or at sea. The data

collected at sea are important for exploring hydrocarbons in basins formed by

tectonic activity (Allen and Allen, 2004), as is the case in e.g. the North Sea. Due

to the water column at sea, an air gun is usually applied as the energy source. The

3



air gun is towed by a survey ship along with a streamer containing pressure

sensitive microphones for marine usage (i.e. hydrophones). A sketch of this basic

setup is shown in Figure 1.1. The energy leaves the air gun as pressure waves and

travels through the subsurface. Depending on the seismic velocities (which

depend on the rock properties) of each layer the seismic energy will either be

reflected or refracted back according to Snell’s law. Amore detailed description of

Snell’s law can be found in Appendix A. A sudden shift in rock properties, and

hence elastic properties, will result in energy being reflected back to the surface.

These shifts in rock properties can therefore be detected on the resulting seismic

data as large amplitudes arriving from the same depth, but only if the shifts are

thick and rapid enough to reflect detectable amounts of energy back. The

detectable ”packages of energy” are often referred to as seismic reflectors.

Because data acquired for exploration purposes are coupled to reflections in the

subsurface they can perhapsmore appropriately be named reflection seismic data.

An example of a raw reflection seismic data set can be seen in Figure 1.2. A raw

reflection seismic data set can also more specifically be named a raw seismic shot

gather or simply ”raw seismic data”. These three terms will be used

interchangeably throughout the thesis. The term ”raw” here refers to acquired

seismic data which have not yet been subject to any processing. Usually seismic

data are processed using signal processing techniques to lower noise levels to

emphasize seismic reflectors. The raw seismic data display the recorded signal

from each hydrophone as a function of time. Hydrophones are usually equally

spaced along the seismic streamer, as illustrated in Figure 1.1, but the geometry

can vary a lot between different surveys. The hydrophone number on the

4



Figure 1.1: Sketch rendition of a seismic acquisition survey at sea. The survey ship is
towing an air gun to inject seismic energy and a streamer with hydrophones for recording.
Picture courtesy of Openlearn.
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abscissa-axis is thereby a measure of horizontal location (i.e. source offset). The

time on the ordinate-axis is a measure on the time it takes the pulse of energy to

reach a seismic reflector and then get back to the surface, where it is recorded by

the hydrophones. This time is commonly recognized as theTwo Way Travel time
(TWT) and acts as a pseudo-measure of depth. A proper conversion to depth in

meters requires a known velocity field of the subsurface. Seismic velocities are

typically in the thousand of meters per second scale. The sampling interval is

often recorded in milliseconds while having a recording interval of a few seconds.

In Figure 1.2 the sampling interval is for instance 2 milliseconds, and the

recording interval is approximately 4 seconds. Inspecting the raw data in Figure

1.2, seismic reflectors at a certain depth can be identified by their hyperbolic

movement/delay as a function of offset, because it takes increasingly more time

to reach hydrophones at greater offset. In fact, the arrival of the signal is

approximately proportional with time squared. A few seismic reflectors are

marked on the raw data with yellow on the right. A wave of energy also travels in

the water directly from the air gun to the hydrophones. This wave is moving

proportional with time and is easily detectable in the seismic raw data, as it

appears as a straight line. The direct wave is marked with blue in Figure 1.2. The

direct wave is usually the first arrival at low offset hydrophones. However, as

hinted in Figure 1.2, the direct wave may not necessarily be the first arriving wave

at larger offsets because the velocity at which waves can travel in rocks is greater

than in water.
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Figure 1.2: Example of raw seismic data. Left: raw seismic data as taken from Yilmaz
(2001). Right: interpretations of arrivals of different phases colored on the raw data, where
blue is the direct surface wave and yellow shows two seismic reflectors.
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1.2 AVO Seismic Data

As stated in the previous section, seismic shot gathers are usually not used in their

raw format but are instead processed to obtain lower noise levels. The data are

then further processed using different processing techniques depending on the

requirements for the specific seismic discipline. A wide variety of seismic

disciplines require different processed data sets (see e.g. Yilmaz (2001) for

examples). Some seismic data sets are for instance processed to amalgamate

information from several raw data shot gathers into one section to showcase the

subsurface geometry. This is done in order to enable easier structural geological

interpretation.

In the following we shall explore a particular processed type of seismic data

named Amplitude Variation with Offset or simplyAmplitude Versus Offset data.
In particular theAmplitude Versus Angle (AVA) data will be presented, because

these serve as a basis for much of the work carried out in the thesis. AVO/AVA

data are processed as a gather of traces. Each trace represents a different offset,

that enables amplitude effects due to offset (or angles) to be investigated. An

example of an AVA data set is shown in Figure 1.3. The gather shows amplitude at

a specific location in the subsurface (here theCommon Depth Point - CDP).

Time is, as for the raw data set, used as measure of depth on the ordinate-axis.

The raw data is processed such that the abscissa-axis shows the reflections as a

function of incidence angle of the incoming wave front.

Themain motivation for processing data into this form is primarily because of

the rise of the seismic discipline AVO analysis. Since 1982, when it was first

demonstrated that reflection coefficients of seismic boundaries change in an

8



Figure 1.3: Example of seismic AVA data. Taken from (Contreras et al., 2007). The re-
flection amplitudes on the ordinate-axis are shown as a function of incidence angle on the
abscissa-axis. A single trace is representing each incidence angle. The black arrow at in-
cidence angle = 46◦ is an arbitrarily chosen cut-off value where the assumptions of AVA
data breaks down (Contreras et al., 2007).
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anomalous fashion with the presence of hydrocarbons, AVO analysis has become

increasingly popular (Ostrander, 1982; Castagna and Backus, 1993). The

anomalous behavior of hydrocarbons makes AVO/AVA data perfect for

hydrocarbon detection. Hydrocarbons were discovered to locally show either

high or low amplitudes in the seismic data depending on the elastic properties of

the surroundings. These anomalous areas were given the popular names Brigt-
andDim-spots respectively. The fact that seismic amplitudes are affected by

variations in the physical properties around layer boundaries also makes AVO

data useful for lithology identification, porosity identification, and fluid

parameter analysis (Castagna and Backus, 1993; Zhang and Brown, 2001). Even

though there should be a clear distinction between AVO and AVA data, AVA data

have historically been referred to as AVO data in AVO analysis (Zhang and

Brown, 2001). To avoid any confusion within the following, AVA data are here

referring to the variation of reflection and transmission coefficients with angle of

incidence as seen in Figure 1.3.

AVO analysis rely on one fundamental assumption: Reflections between two

elastic media are assumed to arise from plane waves at a planar interface. This

assumption lays the foundation of Zoeppritz (1919) equations, which forms the

relationship between incident wave and the scattered wave phases at the

boundary. Following Zoeppritz equations, reflection amplitudes are then

dependent on the incidence angle of the wave. This explains why AVA data, such

as in Figure 1.3, often show amplitude variation as a function of incidence angle

for a specific seismic reflector. In practice, an approximation to Zoeppritz

equations is typically used in AVO analysis, as will be elaborated in Section 2.3.1.

AVA gathers can also be used to predict elastic properties (velocitiy, impedance,

10



density, etc.) (Buland andOmre, 2003a) and/or petro-physical properties

(porosity, water saturation, clay volume, etc.) (Grana, 2016) using inversion

techniques. Obtaining reasonable inversion results for elastic properties of

seismic AVA data will be a recurring theme in this thesis.

1.3 Probabilistic Inverse Problems

In geophysical exploration, data are most likely not directly measuring the

physical quantity of interest. Instead, information aboutmodel parameters (or
physical parameters) has to be inferred from the available data. Given a specific

model parametrizationm, data d can bemodeled using the governing physical

equations g describing the relationship betweenmodel parameters and data:

d = g(m) (1.1)

This unique data response is typically known as the forward problem or the direct
problem. A visual representation of this relationship is shown in Figure 1.4. In

most circumstances, if an experiment is repeated with the same instrumental

setup, the data response is never exactly the same. In reality, observed data dobs
are always associated with information not explained by the forwardmodel.

Assuming that this unexplained information is additive noise ε, the observed data

can be computed as:

dobs = g(m) + ε (1.2)

The inverse problem of predicting the values of m given some observed data dobs
is therefore inherently non-unique. I.e. since noisy data are not fully reproducible,

neither will the inversion results be. The non-unique nature of the inverse
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problemmakes exact information about the values of model parameters

unobtainable (Menke, 2012). There are twomain ways of solving these inverse

problems. The first option is to obtain the best possible model which minimizes

the data misfit. The second option is to create an ensemble of models which all

could potentially be a realistic depiction of the subsurface. Consider first trying to

obtain the best possible model, i.e. a deterministic inverse problem. The typical

property of deterministic inverse problems is their ill-posed nature (Bertero and

Boccacci, 1998). The ill-posed nature (due to noisy data) leads to instabilities in

the obtained solutions, and a certain tolerance towards misfit with the physical

model must be accepted (Parker, 1994). These solutions can be obtained

through optimization, regularization, and other data fitting techniques (see e.g.

Nocedal andWright (1999); Aster et al. (2004)). This way of formulating an

inverse problem is deterministic in the sense that there will be only one final

model which gives the lowest acceptedmisfit with the observed data. However,

the choice of smoothing in e.g. regularizationmethods is a heuristic procedure

based on arbitrary and subjective choices without reference to empirical

observations (Mosegaard andHansen, 2016).

In order to eliminate some of these subjective choices, the inverse problem can

instead be formulated probabilistically. Acknowledging that information about

model parameters and data is always incomplete, the model parameters are

represented by stochastic variables and their corresponding probability

distribution (Mosegaard andHansen, 2016). The issue of ill-posedness of inverse

problems within the probabilistic framework is summarized in the following

sentence byMosegaard and Tarantola (1995):

”...there are no well-posed questions or ill-posed questions, but just
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questions that have a probabilistic answer.”

A probabilistic formulation of inverse problem theory allows combining

several sources of information that can be quantified probabilistically. This is

typically in the form of a prior probability ρm(m) and a likelihood function L(m).

The prior distribution describes prior independent information aboutm. The

likelihood describes how well the data d, associated to a specific modelm
through the forward problem d = g(m), match some observed data. The

solution to such an inverse problem is the posterior probability density, σm(m),

which allows a full uncertainty characterization:

σm(m) = k ρm(m)L(m) (1.3)

where k is a normalization constant. In general, the likelihood function is given

by (Tarantola and Valette, 1982)

L(m) =

∫
D
dd

ρd(d)θ(d|m)

μD(d)
(1.4)

where ρd(d) reflect measurement uncertainties, μD(d) is the homogeneous

probability density, and θ(d|m) reflect modeling uncertainties describing any

imperfections in solving the forward problem, i.e. theoretical uncertainties. The

right plot in Figure 1.4 shows a visual representation of the modeling

uncertainties of the forwardmodel. In most cases the modeling error is ignored

(left plot in Figure 1.4), in which case Equation 1.4 reduces to L(m) = ρd(d),
and hence Equation 1.3 reduces to σm(m) = k ρm(m)ρd(d). This can be due to

the difficulty of quantifying the modeling error through θ(d|m), or it can relate
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Figure 1.4: Left: Visual representation of the forward model (Equation 1.1) which de-
scribes the relationship between data and model parameters. Right: Relationship between
data and model parameters with modeling uncertainties θ(d|m) in the forward model. Fig-
ure taken from (Tarantola, 2005).

to the non-trivial problem of evaluating the integral in Equation 1.4, even in cases

where θ(d|m) is available.

Nevertheless, when solving a probabilistic inverse problem, a correct

evaluation of the likelihood L(m), and hence a goodmodel of the uncertainties

related to both measurements and theory, is essential. Without a correct

assessment of uncertainties, and hence Equation 1.4, the variability of the

posterior probability will also be incorrect (Gerstoft andMecklenbräuker, 1998;

Ulrych et al., 2001; Riedel et al., 2003; Tarantola, 2005; Bosch et al., 2010).

Similarly, a good representation of the prior distribution ρM(m) is needed,

because the posterior results will be equally affected by the likelihood and prior

model through Equation 1.3. The problem of constructing realistic priors and

data statistics is discussed in detail in e.g. Scales and Snieder (1997).

As mentioned earlier, the information of d andm should per definition be
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independent (Tarantola, 2005). Twomarginal probability densities p(u) and p(v)
are deemed independent if the joint probability density p(u, v) equals the
product of the twomarginal probability densities

p(u, v) = p(u)p(v) (1.5)

The independence of information from different sources shall be explored in

Section 5.3.1. It will be shown that this one demand is difficult to abide in

practice. In statistics there is a long tradition for using data to obtain some idea of

the prior distribution. From a practitioners viewpoint it is in fact almost

impossible to keep a priori and data information completely separate. If the

independence of information is violated, correlations between d andmwill occur

in the combined information and hence some degrees of freedom are

consequently lost.

1.3.1 The Bayesian approach

Before moving on, a small remark should be made considering what is known as

Bayesian inversion. The probabilistic framework introduced above follows from

the principles of conjunction of information formulated and developed in

Tarantola and Valette (1982). The theory is set up with a basic structure to the

space of all probability distributions as characterized by Kolmogoroff (1933),

with an additional requirement of invariance of form under coordinate

transformation. The invariance ensures that two observers of the same

experiment do not get different results just because they use two different

coordinate systems. Bayesian inversionmethods are usually developed using the

notion of Bayes’ theoremwhich is a simple consequence of conditional
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probabilities (see e.g. Box and Tiao (1992)). A conditional probability is defined

in the Kolmogoroff space. The idea of Bayes’ theorem is that probabilities can be

updated when new information arises. Bayes’ theorem in its beautiful simplicity

states the probability p(A|B) of an event A occurring given that event B is true is:

p(A|B) = p(B|A)p(A)
p(B)

(1.6)

where p(B|A) is the probability of B occurring given that A is true, and p(A) and
p(B) are the probabilities of observing each event, A and B, independently of each

other. p(A) and p(B) are also known as the marginal probabilities. Combining

Bayes’ theorem in Equation 1.6 with probability densities allow a reformulation

in terms of vectors. Using the data andmodel parameters as vectors yields:

p(m|d) = c × p(d|m)p(m) (1.7)

where the marginal probability of the data p(d) is written as a normalization

constant p(d) = c−1 (Box and Tiao, 1992). In the Bayesian approach to

inference the distribution p(m) represents the density assigned tom, i.e. the

prior information. By introducing a likelihood probability distribution L(m|d)
for the observed data information aboutm, the prior knowledge of the model

parametersm can be updated using the information contained in the likelihood.

The updating mechanism is then given by Bayes’ theorem (Givens andHoeting,

2012):

p(m|d) = c × p(m)L(m|d) (1.8)

The careful reader will by now have noticed the resemblance to the solution of

the inverse problem in Equation 1.3. Although onemay arrive at the same
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outcome, there is a difference in the two paths leading to these results. The

difference lies in the distinction between conjunction of information (in this case

the prior and likelihood) and updating information (prior) with a likelihood, as

in Bayesian approach. Generally, the conjunction of two probability distributions

p1(m) and p2(m) states (Tarantola and Valette, 1982):

p1(m) ∧ p2(m) = k
p1(m)p2(m)

μ(m)
(1.9)

where∧means conjunction, k is a normalization constant, and μ(m) is a

homogeneous probability density. μ(m) ensures that the result is invariant to

changes in coordinate system. This in principle allows a solution in which one

can change coordinate system and still obtain a solution which is consistent. In

the Bayesian formulation the coordinate system in which p(m) and L(m|d) in
Equation 1.8 is found, is implicitly selected through the formulation itself. The

implicit coordinate systemwithin the Bayesian framework leads to the

conditional probabilities used in Bayes’ theorem. In fact, Bayes theorem can be

computed as a special case of the conjunction of information as shown in

(Tarantola and Valette, 1982). But, one cannot deduce the conjunction of

information from Bayes’ theoremwithout introducing extra information. In that

sense the probabilistic formulation of Tarantola and Valette (1982) is more

general, as the probability density distributions introduced here are invariant.

Since most inverse problems are formulated in a fixed coordinate system, this has

no apparent effect in practice, and both methods are applicable and would yield

the same result. To explore this further the reader is referred toMosegaard and

Hansen (2016). In the following there will be made no further distinction
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between these two ways of formulating the problem. The general solution in the

probabilistic formulation of Tarantola and Valette (1982) is preferred in this

thesis, because it contains a probabilistic description of the imperfect forward

models, as shown in Figure 1.4.

1.4 Linear Inverse Problems

If the forward relationship between data andmodel parameters is described by a

linear mapping functionG, the forward problem in Equation 1.1 can be written

as:

d = Gm (1.10)

The simplest inverse problems to solve generally involve linear forwardmodels.

Rewriting Equation 1.10 and using observed data (dobs) one can obtain an

estimate of the model parametersmest:

mest = G−1dobs (1.11)

Although this representation is slightly simplistic, this is essentially the idea of

linear deterministic inversion. It also gives a good insight to the problemwith

instabilities in the solution ofmest as presented in the previous section. The

solution can be achieved by introducing a regularization parameter as proposed

by Tikhonov (1963), or solved by some iterative updating method (Nocedal and

Wright, 1999; Aster et al., 2004). A popular solution could beGeneralized Linear
Inversion (GLI) which is an iterative technique refining an initial user-supplied

guess until the response matches sufficiently (Cooke and Schneider, 1983). The

refining part typically involves finding the least squares error solution, i.e.
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minimizing the second norm of the residual ∥Gmest − dobs∥ (Aster et al., 2004).

The solution to the probabilistic inverse problem in Equation 1.3 can also be

obtained with a linear forwardmodel using a general least-squares solution as

described in Tarantola and Valette (1982). To obtain the least-squares solution in

this case, a multivariate Gaussian assumption of the distribution of both

observations andmodel parameters is needed, i.e. they can be described by a

mean and a covariance function (Appendix B). The prior distribution of nm

model parameters is then described by ρm(m) ∼ Nnm(μm,Cm). The nd data

points are distributed by dobs ∼ Nnd(dobs,CD). Implying that the noise is a

zero-mean centredGaussian distribution: ε ∼ Nnd(0,CD). The solution to the

inverse problem can then be analytically obtained as a multivariate Gaussian

probability distributionmest ∼ Nnm(μ̃m, C̃m), with mean:

μ̃ = μm + C̃mGTC−1
D (dobs − Gμm) (1.12)

and covariance:

C̃m =
(
GTC−1

D G+ C−1
m
)−1

(1.13)

The probabilistic least-squares solution in Equation 1.12 and 1.13 can also be

obtained using conditional Gaussian probabilities (e.g. Buland andOmre

(2003a)).

1.5 Inversion of Seismic Data

Awide variety of inversionmethods for seismic data exists today. Inversions

typically try to obtain reasonable estimates of subsurface properties. No

prevalent method is yet to emerge which is supported by the broad collection of
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approaches that now exist within industry as well as academia (see e.g. Yilmaz

(2001)). The deterministic GLI method is probably the most commonly used

seismic inversion technique (Cooke and Cant, 2010). GLI has been the industry

standard for many years (see e.g. Cooke and Schneider (1983)) and its popularity

is possible due the computational efficiency compared to e.g. probabilistic

inversionmethods. Full Waveform Inversion (FWI), which is also a deterministic

inversion technique, has seen a rise in popularity throughout the last decade

(Datta and Sen, 2016). In principle, a posterior covariance can also be estimated,

i.e. solving the FWI probabilistically. However, in practice it is not so easy due to

heavy computational demands in solving the forward problem. The basic

deterministic formulation follows fromGLI as a data-fitting least-squares

minimization problem. FWI is in contrast to GLI based on a non-linear forward

model, as in Tarantola (1986). FWI incorporates all wave phase information,

which sets it apart from traditional seismic data inversionmethods. By the

inclusion of the full wave field in the forwardmodeling, FWI is trying to limit

wave-number sensitivity issues in the regular deterministic inversion approaches

(Virieux et al., 2017). A detailed review of the method can be found in Virieux

andOperto (2009).

The popularity of deterministic inversionmethods as GLI and FWI can also

potentially be ascribed to the typical ”geological” mindset within the exploration

industry. In geology onemodel of the subsurface is usually sufficient. For

instance, consider a geological outcrop. The geological interpretation of this

outcrop is deterministic and only depends on the observers interpretation. Layer

boundaries, layer types, facies etc. are all determined without uncertainty in a

single final geological model, which represents all available information of the
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outcrop. Similarly, this mindset leads to only one true model of the Earth.

Accepting the fact that there exists not only one best model, but rather an

ensemble of equally probable models is not an easy transition. This also goes for

decisionmaking in industry. How are one supposed to make a decision whether

to drill or not based on several models? A shift in paradigm to (computational)

time consuming probabilistic methods is also a practical challenge. However, the

need for reliable risk assessments within the exploration seismic community have

slowly increased the interest in probabilistic methods (Cooke and Cant, 2010).

While deterministic methods have been successful, they have their limitations in

seismic inversion. Mainly, there is no way to ensure correct uncertainty

quantification as well as ensuring that the final model is consistent with all

information available.

Due to these limitations, probabilistic inversionmethods have gained increased

attention in later years. Large data sets have so far been an issue due to the

computational cost of computing the full uncertainty. The linearization of a

seismic forwardmodel provided by Buland andOmre (2003a) allowed a

computationally efficient method of obtaining probabilistic results, even for large

data sets. The linearization of the seismic forward has led to a wide variety of

probabilistic inversion techniques. In recent years, it has also been used in

combination with a linearized rock physics model to introduce Bayesian

linearized rock-physics inversion (Grana, 2016). One of the main issues with

probabilistic linearized seismic inversion is the assumption of Gaussian

distributions of both data residuals andmodel parameters. The Gaussian

distributions can be transformed (e.g. normal score transformation) in order to

produce non-Gaussian results. The Gaussian random fields can also be
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generalized in order to induce skewness or multi-modality into the models

(Rimstad andOmre, 2014a). The linear seismic forward has for instance been

used with Gaussian mixture random fields to obtain lithological inversion results

(Grana et al., 2017). Alternatively, a sampling method can be applied in order to

allow for both a non-linear forward relation and non-Gaussian distributions

(Mosegaard and Tarantola, 1995).

Even though the linear seismic forwardmodel has been extremely popular in

recent years, it is still a linear approximation to a non-linear problem. The

reliability of the linearization still remains unresolved. For probabilistic methods

in general there is also an issue regarding how to obtain reliable probability

distributions describing data residuals (including modeling uncertainties) and

model parameters. When working with data, one inevitably introduce distortions

in the results, which can be attributed to presumptions and/or methodical errors.

These distortions will in this thesis be referred to as biases. This Ph.D. thesis

explores some of these biases and issues of obtaining trustworthy posterior

uncertainties, when doing probabilistic linear inversion of reflection seismic data.

The center of attention is biases arising frommodeling errors in the forward

problem, but work is also carried out in regards to non-stationarity in the prior

model and the noise model in general.
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“Go back?” he thought. ”No good at all! Go sideways? Impos-
sible! Go forward? Only thing to do! On we go!” So up he got,
and trotted along with his little sword held in front of him and
one hand feeling the wall, and his heart all of a patter and a
pitter.”

J.R.R. Tolkien (1937),TheHobbit

2
Forwardmodels

Just as the hobbit did, one must first be able to go forward in order to solve

the inverse problem. For a mathematician there is a certain amount of ambiguity

when describing one problem as the inverse problem and one as the forward

problem. In mathematics, there is an exchanging role of data andmodel

parameters where it seems quite arbitrary to decide a forward (or direct) relation

and an inverse relation respectively (Bertero and Boccacci, 1998). For a physicist

however, one relation is deemedmore fundamental. Data are measured as a result

of some physical process. If the data were not measured, they would not exist. It is

this causality which traditionally has deemed one relationship more fundamental
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than the other. Forwardmodeling is essentially the physics of any inverse

problem, wherein a link betweenmodel parameters and the measured data is

presented. As put by Tarantola (2005):

”Forwardmodeling: discovery of the physical laws allowing us, for

given values of the model parameters, to make predictions on the

results of measurements on some observable parameters.”

Recall the forwardmodel defined in Equation 1.1.

d = g(m)

Raw seismic data d are, as stated in the introduction, recordings of pressure

variation over time at different locations. These data arise from recordings of

energy traveling from a source through the subsurface. We parametrize the

problem as a subsurface with some elastic propertiesm. In this study, the elastic

properties used is the pressure wave velocity (vp), shear wave velocity (vs), and
density (ρ). The perhaps most correct forwardmodel g to obtain seismic data is

to calculate the propagation of the full wave front from a known source in the

subsurface through space and time. This is also known as Full Waveform
Modeling (FWM). The wave propagation can for instance be simulated by

approximating the elastic wave equation using a finite difference scheme. This

technique has previously been successfully applied in order to simulate seismic

shot gathers in e.g. Charara et al. (1996). For a general review of the use of

finite-difference in modeling of seismic wave propagation please refer toMoczo

et al. (2007). For AVO cases, the raw seismic data from the FWMneed to be

processed such that they resemble AVO data. The processing then implicitly
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becomes part of the forwardmodel and involves compensation for spherical

divergence andNormal MoveOut (NMO) correction. If an AVA gather is needed,

an offset to angle conversion is also applied. Alternatively, seismic gathers can

also be modeled using a convolution between a proper wavelet and a reflectively

series. For AVA data the reflectively series is angle-dependant. In the following

section a short review is given of the FWMused in this thesis. This is followed by

the introduction of the convolutional forwardmodel along with different options

of calculating the necessary reflectivity series. Finally, the processing techniques

used in order to convert raw seismic data to AVA seismic data are presented.

2.1 FullWaveformModeling

The elastic wave equation is used to describe the propagation of waves through

an elastic medium. In order to obtain the elastic wave equation (used as the

seismic wave equation), the momentum equationmust be considered as well as a

definition of the relationship between stress (i.e. the force per area) and strain (i.e.

the deformation of the medium).

2.1.1 Elastic wave equation

FromAppendix C the momentum equation for a continuous medium is

established as:

ρ
∂2ui

∂t2
= ∂jτ ij + fi (2.1)

where ui denotes displacements, ρ is density, τ ij is the stress-tensor, and fi is body
forces (e.g. gravity) acting on the medium. Assuming a linear elastic relationship

between stress and strain, the stress tensor in Equation 2.1 can be replaced by the
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strain tensor:

τ ij =


λtr(e) + 2μe11 λ2μe12 λ2μe13

λ2μe21 λtr(e) + 2μe22 λ2μe23
λ2μe31 λ2μe32 λtr(e)2μe33

 (2.2)

where λ and μ are Lamé parameters and εij is the strain tensor, and e =

[ε11 + ε22 + ε33] is the diagonal elements of the strain tensor. This assumption

holds true if themedium is homogeneous and isotropic. Using index notation the

expression of the strain tensor can be written as:

τ ij = λεkkδij + 2μεij (2.3)

where εkk = e and δij is the Kronecker delta (a function providing ones only

where indices are equal, otherwise zero). The strain tensor is described using the

spatial derivative of the deformation u (Aki and Richards, 2002; Shearer, 2009):

εij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
(2.4)

In total, Equation 2.1, 2.3, and 2.4 form a set of coupled differential equations

which describes the (seismic) elastic wave equation.

2.1.2 Finite difference formulation

The full waveform seismic modeling is performed by solving the partial

derivatives in the elastic wave equation using a finite-difference scheme with a

staggered grid. The finite difference method is presented in Appendix E. The

finite-difference solver is designed based on the work presented in Virieux
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(1986); Levander (1988). The elastic parameters are defined on a 2D

staggered-grid. The finite difference implementation follows a first order Taylor

series truncation as in Equation E.6. With the proposed finite-difference scheme,

the main source of error is numerical dispersion (Bohlen et al., 2015). This error

is an effect of the discretization of the partial derivatives. The problem can be

lessened by changing the discretization in timeΔt according to Courant’s

constraintCmax:
vp Δt
Δx

≤ Cmax (2.5)

whereΔx is the discretization in space. Courant’s constraintCmax basically sets an

upper level of accepted numerical error in each simulation based on the velocity

in the model and the discretization hereof. Alternatively, the amount of points to

be included in the finite difference operators (i.e. the order of accuracy) both in

space and time can be changed. More sophisticated finite difference

implementations of the first-order coupled elastic equations with higher accuracy

are available (Bohlen et al., 2015; Igel, 2017). However, higher accuracy

implementations are also computationally demanding. Choosing a suitable level

of accuracy presents a trade-off with wall-clock computational efficiency. For the

general purposes in the present work, a sampling accuracy in fourth order space

and second order time is deemed sufficient.

In order to suppress waves at the boundaries of the model a strategy of Perfectly
Matched Layers (PML) is adapted fromCollino and Tsogka (2001). The general

idea is to split all displacements and stresses into two components. For a

continuous formulation, this has the property of not generating artificial

reflections at the interface between the dampening layers and the unaffected area.

Due to the dampening factor in the discretization of the coupled elastic wave
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equation in the finite difference scheme, small reflections are however bound to

occur. A trade-off therefore exists betweenmagnitude of the dampening factor

and the size of the discretization step (the finite difference). However, the

dampening factor cannot be chosen too low, otherwise a large PML boundary is

needed in order to dampen unwanted waves.

In this thesis, the PML have a dampening factor of 0.001 as suggested by

Collino and Tsogka (2001) for isotropic elastic media in order to avoid any

unwanted reflections in the PML boundary. Heuristically, 40 grid nodes in the

PML are chosen. Smaller boundaries work pretty well from approximately 20

grid nodes and upwards in size. However, to enable an almost perfect absorption

at the boundaries, 40 grid nodes are chosen as a precaution. Albeit, this is slightly

more wall-clock time consuming as a bigger grid is needed. An example of wave

propagation when applying the finite difference forwardmodel is demonstrated

in Figure 2.1. The 1D vertical elastic log in Figure 2.2 is used to generate the 2D

elastic field by applying it at all horizontal locations. The subsurface thereby

becomes a stack of horizontal, homogeneous, and isotropic layers. This

construction of the elastic properties has the added benefit that all recordings of

reflected waves at the surface will share a CRP.More specifically, all reflected

waves will have a common depth point (CDP). In a real seismic survey, the raw

data must be stacked during the processing phase in order to obtain a CDP shot

gather.

The divergence and curl of the finite difference solution, and hence the

propagation of pressure and shear waves is shown as a series of time snapshots in

Figure 2.1. Shear waves are not present in the first water layer, but arises when the
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Figure 2.1: Snapshots of wave propagation using full waveform modeling. The figures in
the left column show the divergence (pressure waves) of the wave field, and the right col-
umn shows the curl (shear waves) of the wave field. The red stars in the top of each plot
indicate the location of receivers, and the yellow lines illustrate the position of absorbing
PML boundaries. The elastic log in Figure 2.2 is used to construct the elastic model.
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Figure 2.2: Simple elastic log (vp, vs, and ρ) used for full waveform modeling in Figure
2.1. The top layer is water with zero shear wave velocity because water is a liquid.
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wave has propagated to 200m depth in accordance with the elastic log in Figure

2.2. The PML boundaries for this setup are indicated with yellow lines on the

sides and on the bottom. The top boundary is a free surface. The PML

boundaries are reasonable at absorbing the waves, as indicated by the snapshots.

The wave propagation also reveals that the pressure waves are propagating faster

than the shear waves both in accordance with the elastic log and the theory of

seismic velocities (see e.g. Aki and Richards (2002); Shearer (2009)). The red

stars at the top of the setup indicate locations of receivers. If the divergence (i.e.

the pressure) is recorded at these locations for each time step in the full waveform

model, a synthetic seismic shot gather can be emulated. The raw seismic shot

gather recorded from the finite difference forward run in Figure 2.1, is presented

in Figure 2.3. The resulting seismic shot gather is denoted draw and the FWM

which is then considered the forwardmodel gfwm, produces this data from an

elastic 1D logm:

draw = gfwm(m) (2.6)

2.2 ConvolutionalModel

Simulating shot gathers using FWM is computationally costly (Virieux and

Operto, 2009), especially if the full wave field is to be computed at each iteration

in e.g. Monte-Carlo sampling techniques. A seismic trace can instead be modeled

as a convolution between a reflectivity series (i.e. the earth response) and a

seismic wavelet (Yilmaz, 2001). This is known as the convolutional model, which

assumes that the earth is composed of a series of flat, homogeneous, and isotropic
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Figure 2.3: Synthetic seismic shot gather obtained using FWM on the elastic log in Fig-
ure 2.2. Snapshots of the executing code and the receiver positions can be seen in Figure
2.1. The offset in meters is displayed on the abscissa-axis. The depth in TWT is displayed
on the ordinate-axis.
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layers (Downton, 2005). The origin of the convolutional model for generating

seismic traces is not well known. The litterature is also very sparse on the physical

rightness of the convolutional model, although it can be shown that the

convolutional model is a high-frequency approximation to the linearized wave

equation (Winslow, 2000). Regardless, the convolutional model remains a very

popular, if not the most popular, method for computing seismic data, primarily

because it allows a computationally efficient alternative to full-waveform

modeling. The convolutional model for one seismic trace S(t) can be stated as:

S(t) = W(t)⊛ R(t) ≡
∫ ts

0
W(τ)R(t − τ) dτ (2.7)

where R(t) is the reflectivity series,W(t) is the wavelet (source-time function), ts
is the duration of the source input, and⊛ denotes a convolution. The

source-time function is usually either estimated from observed seismic data or

approximated by a Ricker-wavelet. The Ricker-wavelet is a common pulse shape

used in reflection seismic modeling (Shearer, 2009). The Ricker-wavelet can be

calculated as (Aki and Richards, 2002):

W(t) = (1− 2π2f2c t
2) exp{−π2f2c t

2} (2.8)

where fc is the center (i.e. peak) frequency in the frequency spectrum of the

Ricker wavelet.

2.3 ReflectionCoefficients

In so-called ”reflecticity inversion”, the reflectivity series R(t) used in the

convolutional model (Equation 2.7) is the desired quantity to retrieve in the
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inversion (see e.g. Downton and Lines (2004); Ulrych and Sacchi (2005)).

Reflectivity inversion has been shown to provide useful inversion results for e.g.

interpretation purposes (Yilmaz, 2001). However, the reflection coefficients

themselves do not carry much physical meaning. In this thesis, retrieval of elastic

parameters (vp, vs, and ρ) is instead the desired outcome of the inversion. The

reflectivity series must therefore be coupled to the elastic properties of the

subsurface through some function, in order to make use of the convolutional

model.

The reflectivity used in the convolutional model is that arising from reflections

of pressure waves Rpp. In order to couple elastic properties to reflection

coefficients, several assumptions are needed. As for the momentum equation

(Equation C.12), used in the full wave-formmodeling, the subsurface must

behave isotropic and elastic (Mavko et al., 2009). Furthermore, the wave front is

assumed plane. This assumption is increasingly more accurate with increasing

distance to the origin (i.e. the source) of the energy wave because the curvature is

diminishing.

Consider a reflection Rpp at a single interface between two elastic media with

different elastic properties. If an incoming pressure wave is ”hitting” the interface

between the twomedia at an angle perpendicular to the interface, the reflection

coefficient of the interface is described as:

Rpp =
Z2 − Z1

Z2 + Z1
(2.9)

where Z = vpρ is the acoustic impedance of eachmedium. This relationship is

sometimes also referred to as the zero-offset reflection. The full reflectivity series

R(t) can simply be computed for an entire elastic log (with depth in TWT) by

34



applying Equation 2.9 for all layer interfaces. The reflection coefficient in

Equation 2.9 is large if the elastic contrast between the twomedia is large. This

result can be used as a general rule of thumb for more complex systems.

2.3.1 Zoeppritz equations

If the incoming wave is hitting the interface at a different angle than perpendicular

to the interface, the simple relationship in Equation 2.9 does not hold. To

describe the full partitioning (in amplitudes of reflected and transmitted waves)

of a plane-wave hitting the interface, Zoeppritz (1919) derived a set of equations

from Snell’s law. Considering only the amplitudes of the waves arising from an

incident pressure wave, the reflection coefficients for reflected (Rpp and Rps) and

transmitted waves (Tpp andTps) as a function of incident angle of the incoming

wave (θ) is given by (Aki and Richards, 2002;Mavko et al., 2009):
Rpp

Rps

Tpp

Tps

 =


− sin θ1 − cos φ1 sin θ2 cos φ2

cos θ1 − sin φ1 cos θ2 − sin φ2

sin 2θ1
vp1
vs1
cos 2φ1

ρ2v
2
s2vp1

ρ1v2s1vp2
cos 2φ1

ρ2vs2vp1
ρ1v2s1

cos 2φ2

− cos 2φ1
vs1
vp1
sin 2φ1

ρ2vp2
ρ1vp1

cos 2φ2
ρ2vs2
ρ1vp1

sin 2φ2



sin θ1
cos θ1
sin 2θ1
cos 2φ1


(2.10)

The angles θ1, θ2, φ1, and φ2 represent angles of outgoing waves (see e.g. Figure

A.1). These angles are related to the incident angle θ according to Snell’s law
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(Appendix A):

θ1 = θ, (2.11)

θ2 = sin−1
(

vp2
vp1

sin(θ)
)

, (2.12)

φ1 = sin−1
(

vs1
vp1

sin(θ)
)

, (2.13)

φ2 = sin−1
(

vs2
vp1

sin(θ)
)

(2.14)

Because Zoeppritz equations define a relationship between elastic parameters

and reflection coefficients which is angle dependent, these equations can also be

used to model AVA data. Evaluating the AVA forward problem using Zoeppritz

equations amounts to first computing the Rpp(θ, t) reflection coefficients using

Zoeppritz equations for each desired angle stack. These series of reflection

coefficients are convolved with a wavelet for each angle using Equation 2.7. Since

the convolution is one dimensional, different wavelets can be applied for each

angle. This process of obtaining an AVA shot gather is inherently a non-linear

process as the Zoeppritz equations are non-linear.

2.3.2 Approximate forms of Zoeppritz equations

Due to the non-linear nature of Zoeppritz equations, several authors have

presented and suggested different linearizations, and hence approximations, to

Zoeppritz equations (Aki and Richards, 1980; Stolt andWeglein, 1985; Shuey,

1985;Wang, 1999). Another motivation for approximating the Zoeppritz

equations is the complexity of the resulting equations. As pointed out byMavko

et al. (2009), the approximations typically prove more physically insightful than
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the Zoeppritz equations. By assuming a small contrast between the layer

properties, Aki and Richards (1980) provided a successful approximation to

Zoeppritz equations. For retrieval of the Rpp(θ) coefficients the following

relationship holds:

Rpp(θ) ≈ avp(θ)
Δvp
vp

+ avs(θ)
Δvs
vs

+ aρ(θ)
Δρ
ρ

(2.15)

where the coefficients are given by:

avp(θ) =
1

2 cos2 θ

avs(θ) = −4vs2

vp2
sin2 θ

aρ(θ) =
1
2
(1− 4

vs2

vp2
sin2 θ) (2.16)

where vp, vs, and ρ represent average pressure wave, shear wave, and density over

the interface, whileΔvp,Δvs, andΔρ represent elastic contrasts over the interface.

A detail which is sometimes overlooked is that θ does not represent incident

angle in the Aki and Richards (1980) formulation, but instead is the mean of

transmitted and incidence angle as noted by Downton and Ursenbach (2006).

The transmitted wave requires prior knowledge of the velocity field which is

usually not readily available in inversion cases. The reflection angle θ is therefore

often approximated as the incidence angle (Mavko et al., 2009). This point is also

discussed a bit further in Appendix H.4.

In this thesis, themain approximate form of Zoeppritz equations is provided by

Stolt andWeglein (1985). This formulation expands the Aki and Richards
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approximation, so that the reflection coefficients are now also time-dependent:

Rpp(t, θ) = avp(t, θ)
∂

∂t
ln vp(t) + avs(t, θ)

∂

∂t
ln vs(t) + aρ(t, θ)

∂

∂t
ln ρ(t)

(2.17)

The difference terms in Equation 2.15 (Δvp,Δvs, andΔρ) are in Equation 2.17

substituted with the partial derivative of the logarithmic value of eachmaterial

parameter, e.g. ∂
∂t ln vp(t) replaces

Δvp
vp

. This substitution is valid only for small

contrasts in the elastic parameters. Using the Stolt andWeglein (1985)

formulation, the small contrast approximation is thereby reinforced. For a

constant or slowly varying background velocity model, vp(t) and vs(t), which are

the coefficients in Equation 2.16, can be precalculated before inversion.

Precalculating the coefficients enable them to be put onmatrix form (A), and

thus a linear mapping between the time derivative of the logarithm of the elastic

parameters exists in the following form:

R = Am′ = ADm (2.18)

whereD is a differential matrix. By constructing a matrix containing the wavelets

for eachmodel parameterW, the convolution is coupled to the reflection

coefficients:

dava = WADm = Gm (2.19)

where the forwardmodel is given byG = WAD. A full linear forward

relationship then exists between AVA data dava andmodel parametersm. This

result and approach is used frequently throughout this thesis because the linear

forward in Equation 2.19 enables linear probabilistic inversion of AVA data. The
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reader is referred to Buland andOmre (2003a) for specific construction of the

matricesW andA. Equation 2.19 is used jointly with Equation 2.26 for the same

elastic log in Appendix H.5 to assess differences between processing raw data and

using the convolutional model as a forwardmodel.

2.4 Processing

Processing raw seismic reflection data into any form of data set is not a trivial task.

The goal of the processing also depends on the seismic discipline for which it

should be used. The raw seismic data can be processed for visual purposes (i.e.

interpretation) or in compliance with the convolutional model for AVO analysis,

or for inversion purposes. A detailed walk-through of the many different

processing steps is beyond the scope of this thesis but can be found in e.g. Yilmaz

(2001). The focus here is the processing of raw seismic data to AVA seismic data

with the purpose of inversion for elastic parameters. There are three important

aspects of a processing sequence for AVO analysis in general (Feng and Bancroft,

2006):

• Relative amplitudes of the seismic data must be preserved throughout the

processing sequence as all AVOmethodologies rely on the variation as a

function of offset.

• The processing should make as minimal an impact as possible on the

original frequency spectrum during any form of band-pass filtering, i.e.

filters should be broad in frequencies.

• CRP gathers should be used to derive any AVO attributes in pre-stack

inversion
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Figure 2.4: Factors influencing the amplitudes of reflectivity as a function of offset. Table
taken from Downton et al. (2000)

Castagna and Backus (1993); Downton et al. (2000) recognize the trade-off

between preserving the relative amplitudes and reducing noise as the most

important aspect in processing AVA data. Downton et al. (2000) offers a brief

summary of some of the factors influencing the amplitudes of reflectivity as a

function of offset. These factors are displayed in Figure 2.4. Processing of real

world seismic data therefore requires a lot of expertise when balancing out these

different factors. Ideally, the processor is able to preserve all amplitude changes

related to geology while removing all possible noise sources. However,

processing itself usually leads to introduction of some biases in the form of signal

corruption. Due to the amount of raw seismic data available in a seismic survey,

the processing has to be automated for the majority of the survey. In practice,

only a few different raw data sections are processed individually in order to setup

a quasi-robust processing sequence for the entire data set. Quasi-robust implies,

that the processing sequence most likely work more efficiently for some sections
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of the seismic data than others, depending on the factors displayed in Figure 2.4.

An additional challenge in the processing of seismic data is the heuristic nature

of the method in general. The processing of a specific seismic section depends on

subjective decisions made by the processor. These subjective choices are usually

based on previous experience and on what looks ”realistic” in terms of expected

geology and seismic reflectors. The problems regarding processing of seismic

data is covered in Section 5.2.

The essential processing steps when processing raw seismic data draw from the

proposed FWM (Equation 2.6) into AVA gathers are covered in the following.

The raw data from the FWM are an idealized version of what would be expected

in a real world seismic data set. Therefore, some additional processing steps

would be needed for real data in order to suppress noise that are not present in

the FWM results. The noise on draw will exclusively be attributed to modeling

errors from the FWM. Those can roughly be divided into two categories: The

modeling errors from inaccurate physics (mainly describing the wave

propagation with the elastic wave equation), and the simulation errors due to the

finite difference method. The fourth order space and second order time accuracy

combined with the PML strategy for unwanted wave suppressionmakes the

noise from the finite difference modeling gfwm supposedly negligible compared to

errors from processing. Additionally, using a PML boundary at the top surface of

the modeling grid allows the suppression of multiples directly in the forward

modeling and not in the subsequent processing. Multiples are usually a big issue

in seismic processing (Yilmaz, 2001). Because draw is considered basically

”noise-free”, the following processing steps can be thought of as the minimal (or

essential) steps in transforming the raw data into AVA shot gathers.
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2.4.1 Correction for spherical divergence

As a wave propagates away from the source it spreads out spherically as seen in

Figure 2.1. The wave front is diverging as a function of distance r to the source. A

proper compensation for this spherical effect is an absolute necessity if reflection

amplitudes are to be used in further analysis (Newman, 1973). This is also

known as correction for geometrical spreading.

In a simple case with a homogeneous medium, the amplitude should attenuate

proportionally with distance (the radius from the source point) squared r2.
However, since the subsurface is made of complex layering and is not a

homogenous medium, this is consideredmore a rule of thumb for the diverging

wave field. Velocities usually increase with depth causing a more rapid decay in

amplitudes than 1/r2 (Yilmaz, 2001). To compensate for the wave attenuation, a

divergence factorDdiv can be introduced. Newman (1973) introduced a full

description of the wave attenuation as a function of horizontal distance to the

source x (i.e. the offset) and incidence angle θ

Ddiv(θ, x) =
2x

tan2(θ1)

n∑
i=1

di sin(θi)

cos3(θi)
(2.20)

where θi and di are the incidence angle and thickness of the ith layer respectively.

To apply Equation 2.20, a priori knowledge of interval velocity and the thickness

of each layer must exist. In practice, some approximation to this divergence

measure is instead used. A common approach is to approximate the divergence

Ddiv,0 fromTWT and root-mean-squared (rms) velocities at zero-offset and apply
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these for all offsets (Wang andMcCowan, 1988; Yilmaz, 2001):

Ddiv,0(t0) = t0
vp2

vp1
(2.21)

where t0 is the TWT, vp1 is the velocity in the first layer, and vp is the

time-weighted rms velocities. These velocities are usually estimated as part of the

pre-processing phase. However, since the raw seismic data here are based on a

known elastic model, these velocities are readily available, and thus reduces the

need for pre-processing. A caveat of applying Equation 2.21 to accommodate the

wave attenuation is that it is known to overcompensate the correction (Yilmaz,

2001). A common approach is furthermore to apply a simple correction of the

following form (Wang andMcCowan, 1988; Yilmaz, 2001).

Ddiv,0(t0) = βtα0 (2.22)

where α and β are arbitrarily chosen scalars. Figure 2.5 shows a raw data set before

and after being corrected for spherical divergence using Equation 2.22 with

α = 1.1 and β = 1. These values are chosen empirically with the goal of having as

consistent amplitude of the direct wave as possible within the correction. It

should now be apparent for the reader that the subject of compensation for

spherical divergence is not straight-forward and requires a series of subjective

choices ranging from decisions about which compensationmethod to apply, to

choosing compensation factors within eachmethod. Alternatively, correction for

divergence can also be performed in the slowness domain (Wang andMcCowan,

1988). Simply using anAutomatic Gain Control (AGC) filter does not provide a
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Figure 2.5: Example of correction for spherical divergence. a) Raw data from finite dif-
ference simulation. b) Raw data corrected for spherical divergence using Equation 2.22.
Abscissa-axis displays offset in meters while the ordinate-axis displays TWT depth in sec-
onds.
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correction for spherical divergence because it is not based on any physical

understanding of the problem, but rather a way of leveling out amplitudes.

Applying an AGC filter would therefore tamper with the original amplitude

variations, and hence violate the assumptions of AVO data.

2.4.2 NormalMoveout Correction

The raw data in e.g. Figure 2.3 and Figure 2.5a display a hyperbolic trajectory of

seismic reflectors as a function of offset. The time delay experienced at a receiver

at a given offset compared with the arrival time at zero-offset is known as the

Normal MoveOut (NMO) and is denotedΔtNMO. The idea behind

NMO-correction is to account for this time delay and hence flatten the seismic

reflectors, in other words shifting the seismic records to their zero-offset

equivalent (Shearer, 2009). FromAppendix F the following relationship

(Equation F.3) between TWT and arrival time at a certain offset t(x) is
established as a function offset x:

t(x) =
√

t20 +
x2

v2
(2.23)

where v is the velocity in the layer above the reflector. This relationship can be

used to correct the arrival times by calculating the NMO time delayΔtNMO as:

ΔtNMO = t(x)− t0 (2.24)

Equation 2.23 is derived under the assumption that the velocity is constant in the

layers above the reflector. However, the velocity profile of the subsurface is never

constant. The velocity model v therefore needs to satisfy the assumption of
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constant velocity while still approximating the true velocity of the subsurface. If

the velocity is too low, the arrival time t(x) in Equation 2.23 becomes larger than

intended, and henceΔtNMO in Equation 2.24 becomes too large. The result is an

overcompensation. Similarly, for a velocity that is higher than intended, the result

is an undercompensation of the reflections. The default choice for velocities is to

use the time-weighted rms velocities obtained during pre-processing of the data.

This satisfies both assumptions fairly, because the velocity is not constant, while

at all depths the velocity is an average of all the above-laying layers. As for the

spherical divergence correction, the velocity log already exists for the synthetic

data which enables a much better NMO-correction.

A well-known problemwith applying NMO-corrections is non-stationarity of

the compensation level, i.e. depths and offsets are not compensated equally. A

frequency distortion is therefore to be expected. This distortion is particularly

present for shallow reflectors and at large offsets (Yilmaz, 2001). At larger offsets

the NMO-correction is heavier due to the hyperbolic trajectory of the reflectors.

The reflectors are stretched and thus the frequency is lowered. This is also known

as NMO-stretching and is an unfortunate side-effect of NMO-corrections. In

Figure 2.6 the raw data corrected for geometric spreading is NMO-corrected

using the available elastic log. The frequency distortions are easily detectable in

the NMO-corrected data set (i.e. an AVO gather). The effects at shallow depths

and large offsets are sometimes muted out of the resulting AVO gather in order to

avoid any issues from these distortions in the AVO analysis or in the further

processing. This can be done simply by introducing a topmute which sets all

affected values to zero. However, the lowering of the frequency due to
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Figure 2.6: Example of NMO-correction. The data in Figure 2.5b is corrected for normal
moveout. Frequency disturbance effects are easily detectable in the NMO-corrected shot
gather. The abscissa-axis displays offset in meters while the ordinate-axis displays TWT
depth in seconds.
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NMO-stretching is not possible to remove completely. Spectral balancing is

commonly used to compensate the high frequency loss (Xu and Chopra, 2007).

Nevertheless, a residual amount of NMO-stretching must be expected in the

resulting AVO seismic data. A stretching of the seismic wavelet as a function of

offset can accommodate some of this bias in the further analysis (Xu and Chopra,

2007). Yet, this wavelet stretching is still stationary in depth (i.e. time) and not

straight-forward.

2.4.3 AVO gather to AVA gather conversion

Finally, the AVO gather is converted to an AVA gather. This offset-to-angle

conversion follows from combining offset traces to angle traces. It is therefore

important to establish a relationship between incoming angles and offsets.

Castagna and Backus (1993) provide the following equation between the

incidence angle θ and offset x:

sin(θ) =
(

vint
vsmooth

)(
x√

[x2 + (vsmootht0)2]

)
(2.25)

where vsmooth is a smoothed stacking velocity profile (e.g. the rms velocities) and

vint is a velocity profile for each layer following fromHewitt Dix (1955) formula.

The second paranthesis follows from simple trigonometry and the first

paranthesis is a term correcting the use of smoothed velocities. Using Equation

2.25, a single angle trace can then be constructed by ray-tracing the angle through

the offset domain. In practice, a central angle of interest is chosen including

nearby angles in a panel for which ray-tracing is performed (Castagna and

Backus, 1993). By stacking all the traces within the panel, an angle trace is
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constructed for the central angle. An example of panels for ray-tracing can be seen

in Figure 2.7. Applying the panels shown in Figure 2.7 to construct an AVA gather

from the AVO gather in Figure 2.6 is seen in Figure 2.8a. The zero-offset trace is

taken directly from the AVO gather. The NMO-correction plus angle conversion

leads to increasing biases as a function of offset. Especially when anisotropy in the

subsurface is considered. Mukhopadhyay andMallick (2011) propose a

ray-based offset-to-angle transform, allowing the generation of AVA gathers using

raw seismic data uncorrected for normal moveout. However, the standard

procedure still remains to apply an NMO-correction with a subsequent

offset-to-angle conversion. The final essential processing sequence for raw

seismic data to AVA gathers can be summarized as in Figure 2.9.

A final remark on processing: The processing done in Appendix H.5 is

performed using the industry software package Promax (Landmark, 1999). The

specific implemented processing algorithms are therefore unknown but should

follow the physical theory outlined in the presented corrections.

Using the FWM (Equation 2.6) to create a raw seismic data set, a processing

sequence gproc can be set up to create a forwardmodel for the full forward

modeling of AVA shot gathers from an elastic model:

dava = gproc(draw) = gproc(gfwm(m)) (2.26)

gproc should, as mentioned earlier, as a minimum include the processing steps in

Figure 2.9.

A comparison of obtaining the dava from both processing raw data (dava,proc)
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Figure 2.7: Example of angle panels to be used for ray-tracing in the AVO gather dis-
played in Figure 2.6. The used panels for each of the angles θ = 4, 8, . . . , 40 are shown in
each subfigure. The abscissa-axis displays offset in meters while the ordinate-axis displays
TWT depth in seconds.
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Figure 2.8: AVA gather from same elastic log using different forward models. a) FWM
plus processing dava,proc. AVA gather constructed from the AVO gather in Figure 2.6 apply-
ing the angle panels shown in Figure 2.7. The zero-offset trace is taken directly from the
AVO gather. b) Convolutional model dava,conv. c) Difference between the two AVA data
sets derror. The abscissa-axis displays reflection angles θ while the ordinate-axis displays
TWT in seconds.

Figure 2.9: Flowchart of necessary processing steps from raw seismic data to AVA gath-
ers.
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and convolutional model (dava,conv) can be seen in Figure 2.8a and Figure 2.8b

respectively. The difference between the two AVA data sets

(derror = dava,proc − dava,conv) is shown in Figure 2.8c. Even for a scenario with

low noise, low variability in the subsurface and optimal conditions for processing,

the error derror is still relevant. How relevant will be discussed in 5.2.
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”[t]oday’s posterior distribution is tomorrow’s prior”

Lindley (1970), Bayesian Analysis in Regression
Problems

3
Priormodels

In probabilistic inversion methods, our expectation to the behaviour of the

subsurface must be quantified. The general idea is to incorporate other

information on themodel parametersm in the final model than what comes from

the observed data. These direct sources of informationmust be independent of

the data and should be based on prior experience, knowledge from experts,

physical constraints or alternative measurements ofm. In seismic exploration one

might for instance know something about the distribution of the model

parameters from geological experts and/or from nearby well logs. The direct a

priori information on the model parametersm are gathered in a prior probability
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distribution often simply denoted the prior model. For probabilistic linear

inversion of AVA seismic data as suggested by Buland andOmre (2003a), the

prior model is Gaussian. This prior model is adapted and used frequently

throughout the work in this thesis and is simply referred to as the Buland and
Omre prior model. The Gaussian distribution has a series of beneficial

mathematical properties, one of which allows an analytical solution to the

probabilistic inverse problem. In much of the following an analytical solution is

preferred because it provides computationally fast solutions which can also serve

as a reference.

Onemajor downside of this prior model is the general smoothness associated

with realizations fromGaussian distributions. Sharp transitions between layers

are to be expected in the subsurface, and the Gaussian prior distribution cannot

be expected to fully encompass these changes. More complex prior models are

applied in the literature in order to better describe realistic subsurface variability.

Skewness has been introduced into the Gaussian prior model (Rimstad and

Omre, 2014b). Gaussian mixture models have also been proposed to allow a

prior model which is locally smooth and globally discrete (Grana et al., 2017).

Zunino et al. (2015) use geostatistical algorithms to generate realizations of prior

models (from training images) based onmultiple-point statistics.

In this thesis, a pluri-Gaussian prior model is used in order to create sharp

transitions in the elastic properties in Appendix H.1 and Appendix H.4. The

above-mentioned alternative prior models are probably more adequate at

describing the true variability of the subsurface. They also have one thing in

common, that is they do not allow an analytical solution to the inverse problem.

Instead, some sampling technique must be applied in order to solve the
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probabilistic inverse problem. In the following the Buland andOmre prior model

is introduced along with the pluri-Gaussian prior model. Finally, the prior model

used to create the elastic subsurface models used for the FWM is presented.

3.1 Buland andOmre PriorModel

Themain prior model used in this thesis is a discrete Gaussian distribution, i.e. it

can be described by a mean vector μm and a covariance matrixCm (see Appendix

B). The prior distribution ρM(m) of the model parametersm is then described

by the multivariate Gaussian probability density function:

ρM(m) ∼ Nnm{μm,Cm}

= (2π)−
nm
2 |Cm|−

1
2exp

[
− 1
2
(m− μm)

TC−1
m (m− μm)

]
. (3.1)

where nm is the number of model parameters. The linear forwardmodel based on

Stolt andWeglein (1985) presented in Section 2.3.1 allows a linear relationship

between the logarithm of the elastic properties vp, vs, and ρ and seismic data. The

model parameters are therefore defined as a continuous vector field:

m = [ln(vp), ln(vs), ln(ρ)]T (3.2)

The following is largely based on Buland andOmre (2003a). Describing this set

of model parameters with a multivariate Gaussian distribution requires a discrete

mean vector and a discrete covariancematrix as established previously. Themean

value in this proposal is simply the expectation value of each elastic variable.

μm = E{m} = [E{ln(vp)},E{ln(vs)},E{ln(ρ)}]T (3.3)
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This formulation also allows for slightly varying (i.e. smooth) expectation

functions, which would still satisfy the small-contrast approximation of the

forwardmodel. However, in the following the mean value is constant as

suggested in Buland andOmre (2003a):

μm = [8.006, 7.313, 7.719]T (3.4)

These values correspond to actual velocities: vp = 3000m s−1, vs = 1500m s−1,

and density: ρ = 2500 kgm−3. The covariancematrix of themodel parameters is

constructed using a stationary covariance function:

Cm = C0νt(t0) (3.5)

where νt(t0) is a stationary correlation function of TWT andC0 is an invariant

covariance matrix containing the correlation and variance between the elastic

model parameters. The correlation function νt(t0) needs to be positive definite

and should abide νt(0) = 1. Several correlation functions have these properties,

e.g. the Exponential type, Gaussian type and Spherical type spatial correlation

functions (see e.g. Journel andHuijbregts (1989)). A spherical type spatial

correlation function with anistropic features is for instance used in Appendix H.6.

For the Buland andOmre prior model, a second-order exponential function (i.e.

the Gaussian correlation function) is used:

νt(t0) = exp
[
−
( t0

r

)2]
(3.6)

where r is a range parameter that can be set arbitrarily, depending on the desired

correlation in TWT (i.e. depth). A relatively small range compared with the
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TWT sampling interval produces small correlations between the elastic

parameters and vice versa. In the Buland andOmre prior model, a value of

r = 5 ms is implemented. The sampling interval is set to dt = 2 ms, making the

correlation in depth last over several sampling points.

In the Buland andOmre prior model, the stationary covariance matrixC0 is set

up using an assumption of stationary variance for each elastic parameter (σ2vp , σ
2
vs ,

and σ2ρ). There is furthermore an assumption of a stationary correlation between

each elastic parameter (νvp,vs , νvp,ρ, and νvs,ρ). The elastic covariancematrix for the

elastic parameters is then:

C0 =


σ2vp σvpσvsνvp,vs σvpσρνvp,ρ

σvpσvsνvp,vs σ2vs σvsσρνvs,ρ

σvpσρνvp,ρ σvsσρνvs,ρ σ2ρ

 (3.7)

If zero correlation is assumed between the elastic parameters (i.e.

νvp,vs = νvp,ρ = νvs,ρ = 0), Equation 3.7 reduces to:

C0 =


σ2vp 0 0

0 σ2vs 0
0 0 σ2ρ

 (3.8)

The used correlation between the elastic parameters in the Buland andOmre

prior equals that of ”Well B” in Buland andOmre (2003a)

(νvp,vs = νvp,ρ = νvs,ρ = 0.7), which is relatively strong. The variance of each

individual elastic parameter is set to σ2vp = 0.0074, σ2vs = 0.0074, and
σ2ρ = 0.0024.
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Figure 3.1: Buland and Omre prior model. a) Covariance matrix Cm. b) Realization m
from Buland and Omre prior using Cholesky decomposition. The logarithm of the elastic
parameters is displayed on the abscissa-axis. The TWT is displayed on the ordinate-axis.

Using either Equation 3.7 or Equation 3.8 to computeC0 the final stationary

covariance matrix of the model parametersCm is then symmetric, positive

definite, and of size nm × nm. The final covariance matrixCm for the Buland and

Omre prior model is displayed in Figure 3.1a. The assumed stationarity in the

covariance matrix is not a requirement for the whole prior model to be normally

distributed. It is probably more realistic to expect non-stationarity in the

subsurface and hence model parameters. However, a priori information about

such non-stationarity is rarely available leading to stationary assumptions. In

Appendix H.6, a newmethodology for estimating the non-stationarity in the

prior variance is proposed using maximum likelihood estimators in a sliding

window approach.
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3.1.1 Generating a realization from a Gaussian distribution

A realization from a prior distribution is often needed for various reasons. Since

the covariance matrix in a Gaussian multivariate distribution is positive definite

and symmetric, a realization can be generated using Cholesky decomposition

(Higham, 2009). The Cholesky decomposition of the prior covarianceCm is

given by:

Cm = UTU (3.9)

whereU is a non-singular upper-triangular matrix. This factorization is only

possible if the prior covariance is positive definite. A realizationm can then be

generated from the Gaussian prior distributionNnm(μm,Cm) as (Aster et al.,

2004):

m = UTs+ μm (3.10)

where s is a vector of size nm consisting of random values that are independent

and normally distributed with a mean of zero and standard deviation of one. The

approach of generating or ”drawing” a realization of a discrete Gaussian

distribution using Cholesky decomposition can be applied to any symmetric,

positive definite matrixA of size n × n.

Figure 3.1b displays a realization drawn from the Buland andOmre prior

model using Cholesky decomposition (Equation 3.10). The analytical posterior

distribution of the Buland andOmre prior and the linear forwardmodel is e.g.

also multivariate Gaussian and thereby possible to generate realizations from.
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3.2 Pluri-Gaussian PriorModel

In order to create less smooth a priori models than the Gaussian distribution a

pluri-Gaussian prior model is adapted in Appendix H.1 and Appendix H.4 to

describe a discrete prior model. Pluri-Gaussian prior models are developed and

used frequently in the french geostatistical community in order to simulate facies

and lithotypes (Armstrong et al., 2011). Pluri-Gaussian priors follow as a natural

extension to truncated Gaussian random fields.

Consider a realization r from a central Gaussian distribution (i.e. with zero

mean) and standard deviation of one (N (0, 1)). Such a realization r is shown in

Figure 3.2a. The histogram of this realization is shown in Figure 3.2b. By

choosing a set of truncation points, the continuous realization r can be

discretized into subcategories, which could then for instance represent facies or

lithotypes. If for instance two truncation points are applied of 1 and -0.5, the

Gaussian distribution can be divided into three categories (1,2, and 3), where for

all points in r a vectorm can be constructed as:

m =


1, if r ≤ −0.5

2, if − 0.5 ≤ r ≤ 1

3, if r ≥ 1

(3.11)

An example of how such a truncation looks in 1D is shown in Figure 3.2c. The

discrete nature of the truncated Gaussian is clearly visible to the naked eye. The

distribution of the three categories is shown in 3.2d as a histogram. The

pluri-Gaussian method is basically just an extension of this truncation
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Figure 3.2: Example of a truncated realization m from a Gaussian random field. a) The
un-truncated realization r. b) Histogram of r. c) Truncated vector m consisting of three
categories. d) Distribution of three categories represented by a histogram.
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methodology with several Gaussian distributions to create more complex

patterns. Using instead twoGaussian distributions, the truncation can be split

into more intricate patterns.

Consider two realizations r1 and r2 from twoGaussian distributionsN1 and

N2. A truncation rule is then set up for both Gaussian distributions. This is done

by constructing a 2D truncationmap determining the truncation for r1 and r2
simultaneously. An example of a truncationmap with four different layers is seen

in Figure 3.3. If for instance the first element in the two realizations are r1(1) = 1.5
and r2(1) = 0.5, the first element in the pluri-Gaussian realizationm(1) is layer 4

(yellow) according to the truncationmap (see the black cross in Figure 3.3). The

discrete realizationm can then be constructed element-wise following this

approach. In paper Appendix H.4 two central Gaussian distributions are used to

generate the realizations r1 and r2. The covariance matrices are setup as:

Cr = σ2rνt(t0) (3.12)

where νt(t0) is the spatial correlation function and σ2r is the variance of r. The

variance is set to σ2r = 1 in both distributions. For the correlation function νt(t0)
a Gaussian type spatial correlation function as in Equation 3.6 is chosen forN1

with range r = 1. An exponential type spatial correlation function is chosen for

N2 with range r = 10.

The truncationmap in Figure 3.3 and the outlined distributions are equal to

those used in Appendix H.4 to generate discrete prior realizations. A discrete

truncated pluri-Gaussian realizationm from this setup, can be seen in Figure 3.4a.

The histogram ofm in Figure 3.4b reveals that the distribution of layers in a

62



Figure 3.3: Truncation map used in Appendix H.4 to generate discrete realizations of the
subsurface with four different layers. Black dot indicates r1(1) = 1.5 and r2(1) = 0.5.
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Figure 3.4: a) Pluri-Gaussian realization m created using the two Gaussian distributions
N1 and N2, and the truncation map in Figure 3.3. b) Histogram of the four different layers
in m.

pluri-Gaussian realization does not need to be Gaussian even if the method is

based on Gaussian distributions.

The pluri-Gaussian method can also be used in order to generate discrete

realization in more dimensions by defining the Gaussian distributions

accordingly. Examples can be found in Le Loc’h and Galli (1997); Mariethoz

et al. (2009); Armstrong et al. (2011).

The truncation of the Gaussian distributions makes the pluri-Gaussian
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methods inherently non-linear and non-Gaussian as established previously. It was

therefore not used for any inversion purposes during this PhDwork as the focus

has been on linearized AVO inversion. For the purpose of generating rapidly

changing layers with correlations, the pluri-Gaussian method is nonetheless very

capable, as witnessed in the realizationm in Figure 3.4a. This proved very useful

in Appendix H.4, where a subsurface prior model with rapid changes in elastic

properties was needed to test the small-contrast approximation of Zoeppritz

equations.

3.3 PriorModel for FullWaveformModeling

An elastic model (vp, vs, and ρ) is needed for the full-waveformmodeling. The

full-waveformmodeling is used to generate raw seismic data in Appendix H.5.

Here the effect of processing seismic raw data to AVA data is investigated. The

subsurface variability is assumed to follow the Buland andOmre prior model

with a sampling rate of dt = 4ms. Tomimic an offshore seismic acquisition

scenario, a realizationm from the Buland andOmre prior model was added a

water layer (vp = 1500m s−1, vs = 0m s−1, and ρ = 1000 kgm−3) on top. At the

boundary between water and rocks (i.e. the sea-bottom), a hard ”kick” in the

seismic response is to be expected due to the large difference in elastic properties.

The processing engine within the Promax software (Landmark, 1999) does not

handle these hard kicks particularly well, leading to a lot of heuristic processing

steps to compensate for the effect (e.g. topmuting and removing larger offsets).

Instead of introducing biases in the AVA data from adding these processing steps,

a smooth transition between water and rocks in the elastic log is introduced. An

example of a resulting elastic log is shown in Figure 3.5a.
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The smooth transition at the sea-bottom transitions does not carry any

physical meaning. It is in fact rather un-physical. The transition is purely added as

a necessary step in designing a semi-realistic elastic log with water is on top of the

realizationm, which does not produce a hard kick. A small consolation is that a

layer of unconsolidated sediment is usually found on the sea-bottom in real

geological settings. This layer also acts as a smooth transition between water and

rocks at the sea-bottom. The problemwith the hard kick is therefore especially an

issue for synthetic data. Mukhopadhyay andMallick (2011) also utilize a smooth

transition at the sea-bottom based on an-isotropic velocity analysis of actual

seismic data. The final subsurface model passed on the to the full-waveform

algorithm needs to be converted from depth in TWT to depth in meters. Since

the vp velocity is available, this time-depth conversion is trivial. The resulting

conversion of the log in Figure 3.5a is displayed in Figure 3.5b.
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Figure 3.5: a) Elastic log with smooth transition between subsurface and water column.
The ordinate-axis shows depth in TWT. b) Elastic log from subplot a), that is converted
to depth in meters. This model can be used as input in the full-waveform modeling. The
ordinate-axis shows depth in meters.
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”That’s what I do. Like to make noise. Like to go out and be a
boogie boy”

Iggy Pop (1993), Boogie Boy

4
Noisemodels

Observations of geophysical data, including seismic data, are associated

with uncertainty. If data were not associated with uncertainty, and thus would be

absolutely reproducible, then all models whose response did not match the data

perfectly would be incorrect (Scales and Snieder, 1998). The uncertainty may

arise from a variety of different sources ranging from imprecise measurement

equipment to approximate or even faulty physical relationships between data d
andmodel parametersm. As established in the introduction, an observed data set

dobs can be thought of as a physical forward response g(m) and an additive noise
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component ε (Equation 1.2):

dobs = g(m) + ε

The noise is assumed additive but could in principle also bemultiplicative or have

an evenmore complex relationship to the forward response. Because the noise is

deemed additive, the practical understanding of ’noise’ is then the residual

between the observed and the predicted measurements (dobs − g(m)), i.e. all

that cannot be accounted for by the forward relation g. This is probably not an

unreasonable assumption and the additive noise is also the standard formulation

in inverse problem theory (Sen and Stoffa, 1996;Mosegaard and Tarantola, 2002;

Ulrych and Sacchi, 2005; Tarantola, 2005;Menke, 2012; Bodin et al., 2012). Our

inability to fully predict the outcome of an experiment boils down to twomain

reasons (Scales and Snieder, 1998):

• Inaccurate physics limitations: Current physical models are not capable at

perfectly describing the complexity of the true physical system. The current

physical models can therefore be considered to be approximations of the

true systems in nature.

• Computational limitations: Our current physical models are sometimes

also further approximated on purpose, in order to make them

computationally feasible (i.e. computationally inexpensive to use).

If one could e.g. describe all particles and their internal relationship for all time

and space, a perfect physical forwardmodel would be available. Even, if such a

function was available, it would probably be highly impractical because it would
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require possibly infinitely manymodel parameters. In terms of human

understanding of the physical relations at play, the physical model must be

somehow simple enough for us to grasp the basic concepts. In this sense, our

understanding of nature will probably always be inept. A physical model needs to

be simple enough for geophysicists to reasonably understand and predict the

fundamental outcomes of nature, not describing all particles’ positions at all

times. In our current paradigm, the noise becomes all that can not be directly

mapped with a physical model and the chosen parametrization. By

acknowledging that data is infected with noise of some form or another, a realistic

noise model must be set up in order to account for data uncertainties during

inversion of seismic data.

4.1 TheHuman Aspect

What is deemed signal and noise on a specific data set is ultimately decided by the

geophysicist. Humans have excelled in nature by our ability to recognize and

discern ”patterns”. What is meant by patterns is neatly summarized by Heile et al.

(2017)

”A pattern is what enables prediction at above the chance level. Brains,

human or animal, have evolved as pattern recognition machines.

That’s because survival is enhanced if successful predictions can be

made. The organism will be more likely to survive if it can predict

where and when food will be found and if it can avoid predators. The

prediction can be in the time domain or in the space domain or both.”

All technological and scientific progress are build upon reproduction and
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modification of patterns encountered in nature and the fabrication of new

patterns (Mattson, 2014). The structure of the humanmind also allows us to

pattern-complete possibly noisy and incomplete signals (Battaglia et al., 2012).

This is a natural part of human behavior and is also what has made us successful

so far in evolutionary terms. The appreciation of the pattern-seeking brain has

lead to the development of the mathematical discipline of pattern theory

(Mumford, 1997).

As much as this property of the human brain is an extremely helpful property

in interpretation of data, it also has a build-in fallacy in the discrimination of

signal from noise. Because the human brain is wired to detect patterns, these

patterns are usually weighted higher in terms of signal value. Conversely, data

with no apparent patterns are more likely to be selected as noise or deemed

unimportant. This fallacy is illustrated in the following example.

Consider the data recorded (Data 1) in Figure 4.1a. The data displays a strong

sinusoidal pattern. The normalized power spectrum for Data 1 is shown in Figure

4.1b in blue. The sinusoidal pattern clearly stands out on the power spectrum as a

low frequency component. The data also show a strong high-frequent

component. A logical and natural separation of the signal and noise would be to

consider the high-frequent component as noise and the sinusoidal component as

the signal. A band-pass butterworth filter (red line in Figure 4.1b) is applied to the

data in order to suppress the assumed noise and highlight the signal. The resulting

processed data is shown in Figure 4.1c. The filtered data clearlymatch the original

signal (as illustrated by the red line), when the high-frequent noise is filtered out.

Now, consider the data recorded (Data 2) in Figure 4.1d. Although slightly
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Figure 4.1: Example of filtering of two noisy data sets (Data 1 and Data 2). a) Unfiltered
data (Data 1). b) Normalized power spectrum for Data 1. c) Data 1 after band-pass filter.
d)-f) Same figures as in a)-c) for Data 2. For a),b),d) and f) the abscissa-axis displays
amplitude, and the ordinate-axis displays depth in TWT. The two power spectra in b) and
e) display normalized frequency on the abscissa-axis and magnitude on the ordinate-axis.
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more complex than Data 1, a sinusoidal pattern is definitely discernible for the

naked eye. The normalized power spectrum for this signal in Figure 4.1e shows a

similar pattern to the power spectrum for the first data. Applying a similar

band-pass filter for Data 2, to suppress the assumed noise reveals a smooth data

set, as visualized in Figure 4.1f. Even though the filtered data looks smooth and

apparently noise-free as in the first case, the signal (red line) does not match the

filtered data at all. In fact, the signal is exactly the same as used inData 1. The only

difference between the two data sets is the noise added. The actual noise in Data

2 contains a low-frequent component which is inseparable from the signal both in

the unfiltered data and the power spectrum hereof.

This small example, although a bit simplistic, illustrates twomajor points

regarding noise in data. Firstly, that our pattern recognizing brains can be

deceived by apparent structures in the data. This may ultimately result in a bias or

tendency in the way we perceive noise. Are outliers part of the signal or not? Is

noise mainly something irregular and high-frequent which clearly stands out

from the overall pattern in the data? Secondly, that some noise sources may

resemble the signal to a degree where they are basically ”hiding” within the data,

by having the same frequency. A known example from seismic data is for instance

recurring multiples. How can one take such correlated effects into account when

building a noise model of the data uncertainty?

The answers to the questions above are not straight-forward and should be

considered when building a trustworthy noise model. The example does

demonstrate that it is possible and relatively easy to remove noise which looks

much different from the signal. For seismic data, white noise is usually filtered out

during processing (Landrø, 2008). If data is repeatedly recorded at a certain
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location in space, the results can also be stacked to further suppress uncorrelated

noise. This presupposes that the noise in the data does not correlate over time

(Scales and Snieder, 1998).

Both signal filtering and trace-stacking are frequently applied to raw seismic

data in order to suppress noise. One should therefore be aware of noise with a

strong correlation, because uncorrelated noise is likely removed from processed

data. One should especially be alert for noise which is indiscernible from the

signal. This is discussed further in Section 4.3.

4.2 GaussianDataUncertainty

In order to describe and account for noise in probabilistic inversion, a probability

density function ρd(d) over the data parameter space is introduced. The simplest

probabilistic model to describe residual noise between predicted values d and

observed data dobs is a Gaussian model (see Appendix B):

ρd(d) = k exp
(
− 1
2
(d− dobs − μD)

TC−1
d (d− dobs − μD)

)
(4.1)

where k = (2π)−n/2|Cd|−1/2 is a normalization constant, n is the dimension of

the Gaussian,Cd is the covariance of the data uncertainties, and μd is the mean in

the data uncertainty. For most problems, the noise is centred Gaussian, meaning

that the noise is thought to have zero mean and hence Equation 4.1 reduces to

(Mosegaard and Tarantola, 2002):

ρd(d) = k exp
(
− 1
2
(d− dobs)TC−1

d (d− dobs)
)

(4.2)
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The assumption of centred Gaussian data uncertainties can be partially justified

by the central limit theorem (Gelman et al., 2014). The central limit theorem

basically states that the sum of numerous independent random variables produce

an approximately Gaussian random variable (Aster et al., 2004). The central limit

theorem applies regardless of the distribution of the independent random

variables. The random variables could therefore come from all possible discrete

or continuous distributions and the sumwould still be Gaussian.

As a small intuitive example, considerX to be the sum of two independent

random variablesX1 andX2, i.e. X = X1 + X2. Then the distribution ofX is given

by p(X) = p(X1)⊛ p(X2), where⊛ is a convolution between the two

distributions (Doyle, 2006). Since a convolution is a smoothing operation, p(X)
must be smoother than both p(X1) and p(X2) individually. This smoothing from

convolution gives an intuitive idea of how the central limit theoremworks,

however it does not follow strictly from this result, that the final distribution

approaches a Gaussian for large numbers of variables (Ulrych and Sacchi, 2005).

Recall from the introduction that if modeling errors are assumed negligible,

Equation 1.4 reduces to L(m) = ρd(d). The likelihood over the model

parameter space L(m) is then also Gaussian for a Gaussian data uncertainty. This

result is used frequently throughout different probabilistic inversion schemes

(Buland andOmre (2003a); Malinverno and Briggs (2004); Downton (2005);

Jullum and Kolbjørnsen (2016); to name a few). Mosegaard and Tarantola

(1995) exhibit a case with non-Gaussian data uncertainty, but this can be

considered an exception, because most geophysical data uncertainty is assumed

to be Gaussian. Especially for seismic data.
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4.3 Correlated andUncorrelatedNoise

Cordua et al. (2009) recognize the effect of correlated noise effects in

cross-borehole ground penetrating radar data. They argue that higher resolution

images is obtained when correlation of the data errors are accounted for. This

result can probably be generalized to other ground penetrating methods as well.

In seismic inversion, data uncertainties are however usually assumed to be

uncorrelated and stationary (Rabben et al., 2008; Singleton, 2009; Alemie and

Sacchi, 2011; Aune et al., 2013; Grana, 2016). Explicitly dealing with correlated

noise is suggested to be beneficial in seismic inversion (Ray et al., 2013).

Although spatial correlations of noise in seismic data are crucial, they are difficult

to quantify (Gouveia and Scales, 1998), and this leads to the convenient

uncorrelated noise model. Uncorrelated noise basically means that noise

associated with a specific data point does not have any relation to noise on all

other data points, i.e. the noise is independent.

When little is known about the noise a priori, this can be used as an argument

for applying an uncorrelated noise model for the data uncertainties. Because

noise is uncorrelated and independent, the number of degrees of freedom for the

noise is kept at the maximum (same as the dimension of the distribution). In

other words, uncorrelated noise maximizes the information entropy (Ulrych

et al., 2001; Aster et al., 2004). Uncorrelated (or white) noise is typically obtained

by assuming a centred (zero-mean) Gaussian distribution of data uncertainties

with a fixed (i.e. stationary) variance σ2e . The data covariance matrix then takes

the following form:

Cd = σ2eIn (4.3)
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where In is an identity matrix with dimension n × n.

From the previous sections, we have established that it is important to consider

noise which is correlated and, if possible, not only assume uncorrelated noise in

the data. Correlated noise can also be labeled colored noise as opposed to white

noise. In seismic exploration some specific correlated noise components are also

known as ”coherent” noise (Castagna, 1996; Downton, 2005), and white noise is

sometimes known as ”generic” or random noise (Cambois, 2001; Downton,

2005). These quantities sometimes refer to noise that is and is not reoccurring in

time, and hence deemed removable by stacking. In this study, these terms are

refrained from being used, because they typically introduce some unwanted

ambiguity in what is exactly meant. Instead, the distinction here is made between

uncorrelated (i.e. independent) and correlated (i.e. dependent) noise.

One important source of correlated errors, which is considered in this study, is

the use of inaccurate physics in the forwardmodel g or ”theory” errors. If these

modeling errors θ(d|m) are assumedGaussian, then

θ(d|m) = k exp
(
− 1
2
(g(m)− dobs − μT)

TC−1
T (g(m)− dobs − μT)

)
(4.4)

whereCT is the covariance of the modeling errors, and μT is the mean of the

modeling errors. For infinite variances of the Gaussian distribution the

homogeneous probability distribution μD(d) = k (Hansen et al., 2014). The

diagonal elements of the resulting covariance matrix are the variance of the total

data error, and off-diagonal elements indicate correlation in the error. Combining

the Gaussian modeling errors θ(d|m)with the data uncertainties in Equation 4.1
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yields the following likelihood L(m):

L(m) =

∫
D
dd

ρd(d)θ(d|m)

μD(d)

= k exp
(
− 1
2
(d− g(m)− μD)

TC−1
D (d− g(m)− μD)

)
(4.5)

where the covariance matrixCD = Cd + CT andmean vector μD = μd + μT is

an addition of the data uncertainties andmodeling errors covariance, andmean

respectively. The result that Gaussian data uncertainty andmodeling errors are

additive is simple yet non-trivial (Mosegaard and Tarantola, 2002). If both the

data uncertainties andmodeling errors are assumed to be centred Gaussian, i.e.

μD = 0, Equation 4.5 reduces to:

L(m) = k exp
(
− 1
2
(d− g(m))TC−1

D (d− g(m))
)

(4.6)

The results in Equation 4.5 and Equation 4.6 is used frequently throughout the

work in this thesis as a way of incorporating modeling errors into the likelihood.

Because most probabilistic inversionmethods of seismic data involve

uncorrelated noise, the shape (or color) of the data uncertainty andmodeling

errors is not well established. Riedel et al. (2003); Chen et al. (2007) proposes to

describe the shape of the correlated noise from theory as proportional to the

apparent covariance of the data. This is done using a fixedmaximum likelihood

estimate (Gerstoft andMecklenbräuker, 1998). Gouveia and Scales (1998)

suggest to treat different sources of noise on seismic data with an individual

covariance matrix. Under the assumption of independence between the errors,

the covariance matrices are added and used in a Gaussian likelihood. The
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individual covariance matrices contain information on ambient noise, residual

statics, scaling factors, and discretization errors. However, the caveat here is that

all of these covariance matrices need to be determined before the inversion.

To avoid toomany subjective choices in the noise model, data uncertainties

have also been added as an unknown parameter in a Bayesian inversion

framework (Dosso andHolland, 2006). Dettmer and Dosso (2012) suggested an

extension to this paradigmwith an autoregressive model which enables capturing

of the general covariance structure. Noise estimation has also been applied in the

frequency domain (Ray et al., 2016)

In this thesis, the covariance of the data uncertainty is assumed to be

uncorrelated white noise as in Equation 4.3. The validity of the Gaussian

assumption is also discussed. The correlated part of the noise is associated with

theoretical errors (modeling errors). Themodeling error is estimated prior to the

inversion in e.g. Appendix H.4 and Appendix H.5. In Appendix H.3 and

Appendix H.6 the correlated noise is instead assumed to imitate data as:

CT = σ2TCT,shape = σ2T
HCmHT

max(HCmHT)
(4.7)

whereH is a linear seismic forward operator,Cm is the prior covariance model of

the model parameters and σ2T is the variance of the theoretical errors. Assuming

that the noise is imitating the shape of the data is completely subjective and in

some sense arbitrary. However, noise that tends to have the same frequency and

shape as the signal is very difficult to distinguish during data processing, as

demonstrated in the example in Figure 4.1. Noise that resembles the data

structure follows logically within this category, and is probably the worst possible

80



scenario in terms of filtering noise from a signal. Within this premise, the data

covariance in Equation 4.7 is actually taking the worst possible noise scenario

into account and can conversely be considered a conservative choice in terms of

correlated noise.
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”Don’t raise your voice, improve your argument.”

Desmond Tutu (2004), Address at the NelsonMandela
Foundation in Houghton, Johannesburg, South Africa,

23th of November 2004

5
Discussion

Various challenges exist when inverting seismic data for elastic

parameters. First an inversionmethodmust be chosen. Themethodmight

require more or less approximative physics in order to solve the forward problem.

Deterministic solutions are bias-prone and often ill-posed simply because of the

noise on the data. If instead probabilistic inversion is desired, a probabilistic

formulation of the model parameters is needed. Although this solves the problem

of ill-posedness, it adds several challenges in terms of providing reasonable a

priori estimates of both prior and noise model. The large volumes of seismic data

usually require the solutions to be analytically obtainable.
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For a linear-least squares solution to the inverse problem, the forward is

constrained to be linear, and the likelihood and prior must be Gaussian.

Wave-propagation however is not linear, and subsurface variability is very

unlikely smooth and Gaussian. By introducing a linear forward along with a

Gaussian prior and noise model for a system that is likely both non-linear and

non-Gaussian, one inevitably introduce biases in the posterior solutions.

With all the above-mentioned caveats and known pit-falls one might consider

the feasibility of seismic inversion in the first place. Nonetheless, inversion of

seismic data is still widely applied in geophysical exploration throughout the

industry. Inversion of seismic data has also sparked, and still sparks, a lot of

interest in the academic field, as witnessed by the extensive literature on the

subject. Because seismic inversion is still around it can safely be concluded that

the methodology has its merits, and have so far provided geophysicists with

adequate models of the subsurface.

However, as easily accessible hydrocarbons becomemore scarce, an increased

demand for improved solutions is consequently needed. For probabilistic linear

inversion of seismic data, the question is howmuch the results are biased and

what can be done in order to prevent some of these biases? Furthermore, since

the solution is probabilistic (and not deterministic), it is pivotal to ask whether

the resulting posterior uncertainties can be trusted? In the following, the

challenges in probabilistic linear inverse problems, namely quantifying the effect

(i.e. the error) of linearizing a non-linear problem and dealing with

non-stationarity of statistical properties of the subsurface, is discussed. Finally,

the method of estimating the noise model as part of the inversion is covered.
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5.1 Inversion Vs. Processing

The forwardmodel provides the link between physics and statistics. The physical

system can probably never be fully described. This is partially because it is not

possible to obtain the true physics and partially because simplistic models

sometimes are preferred, as pointed out in the previous chapter.

Seismic raw data are recorded as the source wave propagates the subsurface.

Numerous state-of-the-art software and codes are available to model wave

propagation (Igel, 2017). This allows a near perfect forwardmodel between

elastic parameters and seismic raw data.

Following the probabilistic framework outlined by Tarantola and Valette

(1982), it is theoretically possible to set up an inverse problem directly for seismic

raw data. Any imperfections in the forwardmodel is then the modeling error, and

one needs to define a suitable noise and prior model. Due to the computational

inefficiency of using full waveformmodeling as the forwardmodel, this is still in

practice not an option. Some data reduction in the form of processing is needed

in order to make inversion of seismic data computationally feasible when dealing

with these quantities of data. Processing raw seismic data allows the use of

computationally efficient forwardmodels (e.g. the convolutional model).

Twomain views on processing should be recognized here. Processing can

either, in the view of Tarantola and Valette (1982), be viewed as ”throwing out”

important information from the raw data while introducing biases. A forward

describing the raw data would hence be preferable. Alternatively, processing is

also argued to be advantageous to inversion because it does not require a noise

model. The processing is, in contrast to inversion, thought to be free of
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assumptions and should always be used prior to any inversion (Claerbout et al.,

2004).

In this thesis, processing is seen as a necessary evil that allows the use of a

simpler forward. The quality of processed data relies heavily on the processor and

the processing sequence, and one should per default assume the data to be both

inaccurate and imprecise (Castagna, 1996). In Figure 2.8 it is shown that

processing and the use of the linear forward induce a difference between what is

expected and what is the actual data. In general one is bound to expect biases

from processing raw seismic data (see Figure 2.8 or Appendix H.5).

For an inversion purist, this might be unacceptable, but seeing processing as a

necessary step sometimes allow solutions to be obtainable at all, and is therefore

preferable for a practitioner. The amount of efficient forward solvers in existence

combined with increased computer power would potentially lead to less

processing and instead the use of raw seismic data directly in probabilistic

inversion (Igel, 2017). A probabilistic inversion approach with full waveform

modeling of seismic data is still in the distant future. In the mean time it might

instead be beneficial to concentrate on quantifying the effect of using simpler

forwardmodels.

5.2 Modeling Errors

Modeling errors generally arise from imperfect theory as established in the

previous chapters. Hansen et al. (2014) propose to estimate and describe these

errors with a Gaussian distribution. The basic idea is to generate a subsurface

realization from the prior distribution, where both the inexact and ”exact”

forward response is calculated. The difference between the two is then a
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realization of the error for the specific choice of prior model. An example of the

difference between two AVA forward responses derror is depicted in Figure 2.8.

Generating a sample of the modeling error by repeating this process makes the

estimation of a Gaussian distribution possible by approximately describing this

sample. A similar approach is used to quantify ”non-linearity errors” (Møller

et al., 2001). The non-linearity error refers to the difference between the simple

linear forward used in the inversion and a more complex non-linear forward

model which is more realistic.

The proposedmethodology has several advantages. Firstly, it allows for a

Gaussian estimation of potentially non-linear errors. Secondly, if the modeling

errors are Gaussian, they can be accounted for in a linear least-squares solution.

Finally, the methodology is independent of data because the sample is based

solely on the chosen prior and forward. Hence, the modeling error can be

estimated prior to inversion.

In e.g. Riedel et al. (2003) they estimate the modeling errors directly from the

seismic data. The argument here is that the estimate is independent of personal

choices for the prior information. On the contrary, it can be argued that a prior

model must be chosen regardless when doing probabilistic inversion.

Furthermore, in the methodology presented in Riedel et al. (2003), the data is

inherently used twice, both for the estimation of modeling errors and again in the

inversion. This conflicts with the idea of completely independent sources of

information. Based on the reasoning above, the methodology of Hansen et al.

(2014) is adapted in this thesis in order to quantify and estimate modeling errors

in seismic AVA data.

Modeling errors for processed seismic AVA data are commonly acknowledged
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in the literature (Gerstoft andMecklenbräuker, 1998; Buland andOmre, 2003a;

Riedel et al., 2003; Dosso andHolland, 2006; Chen et al., 2007; Rabben et al.,

2008; Bosch et al., 2010; Aune et al., 2013). Many sources of modeling errors are

recognized, including; using the 1D convolutional model to reflect a 3D physical

system, the use of the acoustic-wave equation as opposed to the anisotropic

visco-elastic wave equation, imperfections in data processing, general anisotropy

considerations, the effects of processing the raw data, uncertain wavelet estimates,

and uncertainty on the background velocity model (Ball et al., 2015; Li et al.,

2015; Thore, 2015).

The background velocity model is necessary for all the critical processing steps

shown in Figure 2.9. The background velocity is thus essential and is routinely

estimated as part of pre-processing the raw seismic data. The importance of the

velocity model in seismic processing is illustrated in the works ofWeibull (2013).

Modeling errors due to processing are often neglected when the data is used in

an inversion setup (or in other seismic disciplines). This is perhaps done out of

convenience and/or because processing errors are difficult to quantify. The work

in Appendix H.5 shows that modeling errors are to be expected on seismic AVA

data even for processing of almost ”noise-free” raw data with a limited amount of

bias-infusing processing steps. Using the methodology in Hansen et al. (2014) a

Gaussian model is constructed, which enables a better description of the

modeling errors and hence improves the inversion results.

The processing is conducted knowing the true background velocity model.

Since processing is dependent on the velocity model, the significance of the

modeling errors are expected to increase significantly if the velocity is not known

but rather estimated during pre-processing. Quantifying the effect of imperfect
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velocity models is a natural extension to the presented work in Appendix H.5, and

could potentially yield much improved inversion results.

A remark should be made concerning the size of the sample (N) for which the

covariance of the modeling errors is based on. Figure 5.1 displays the estimated

covariance for four different sample sizes of the modeling errors from the

processing as in Figure 2.8. As N increases, the estimated covariance matrices

converge towards a stable solution. The difference between Figure 5.1c and

Figure 5.1d is minuscule compared with N = 50 in Figure 5.1a. In this study, N =

1000 is the preferred option, as a conservative choice for the sample size.

However, the results in Figure 5.1 indicate that N = 500 is a reasonable threshold

for the minimum size of the sample. This number corresponds well with results

obtained in Hansen et al. (2014) for cross-hole tomography. Møller et al. (2001)

used a smaller sample size adding some uncertainty to the reliability of the

estimate.

Linear approximations to Zoeppritz equations are usually considered valid for

a subsurface with low variability in the subsurface properties. In Appendix H.4 it

is shown that even using a linear approximation to Zoeppritz equations, when the

subsurface is smoothly varying (in this case Gaussian), results in significant

modeling errors, especially, for angles above 30◦. This is in accordance with

previous results (Buland andOmre, 2003a; Mavko et al., 2009). If the subsurface

is non-Gaussian, in this case pluri-Guassian, the modeling errors are significant

for angles well below 30◦.

The work in Appendix H.4 assumes perfect processing of the seismic data, i.e.

that modeling errors can only be attributed to linearization of Zoeppritz
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Figure 5.1: Estimated covariance models for processing error with different sample size.
a) N = 50, b) N = 200, c) N = 500, d) N = 1000
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equations. This indicates that evenmodeling errors, which may be interpreted as

a lower limit of what can be expected for seismic data, are important to recognize

and account for. This is the case even if the modeling errors at first may seem

insignificant. Themodeling errors for both processing and for the linearization of

Zoeppritz equation increase with increasing angle. Larger angles of incidence

include information about shear wave velocity (vs) and density (ρ), whereas

information about acoustic impedance is coupled to smaller angles. Modeling

errors are therefore important to account for in order to obtain reasonable

prediction of e.g. the vp/vs ratio, whereas acoustic impedance is not as prone to

modeling errors.

One could argue that the combination of different sources of modeling errors

may cancel out. If this is not the case, which there is no immediate evidence

supporting, thenmodeling errors are perhaps the most important, yet

unresolved, problems of probabilistic inversion of seismic data. The proposed

method of approaching quantification/estimation of modeling errors has shown

promising results so far for seismic data. Estimating the modeling errors makes

them possible to be accounted for in probabilistic inversion and seems crucial in

avoiding biases using approximative physics. This would ultimately lead to

trustworthy predictions, and perhaps more importantly, trustworthy

uncertainties. Until it becomes computationally viable to perform probabilistic

full waveform inversion on raw seismic data, the methodology offers a step in the

right direction. Basically, estimating modeling errors allows the geophysicist to

use a ”cheap” forward, while acknowledging the more exact forward solution.

Using a standardMonte-Carlo sampling technique (Mosegaard and Tarantola,

1995), each set of data would have to be sampled with approximately one million

91



iterations. With an expensive forwardmodel, this process is unfeasible. However,

the Gaussian model for modeling errors can be obtained with a sample size of

500, as shown earlier. Enormous computation savings can therefore be made by

allowing the use of a much faster forwardmodel. The slight caveat for using the

approximate forwardmodel with the inclusion of modeling errors comes in the

form of posterior resolution. The resolution can never become as good as

applying the more exact forward. The alternative of ignoring modeling errors is

most likely prone to be both less accurate and produce false posterior

uncertainties.

In the least-squares solution to the probabilistic inverse problem, modeling

errors are trivially accounted for in Equation 4.6 by addition of the covariance

matrices. For an inversion case with a non-Gaussian prior model sampled with a

Monte-Carlo technique, the inclusion of the modeling errors would potentially

easy the sampling, because more realistic uncertainties on the model are used. It

would actually allow for a larger misfit between proposed forwardmodels and the

observed data. Although slightly un-intuitive, this result is confirmed in

Appendix H.5 to be beneficial in obtainingmore realistic posterior solutions. The

results would not only be more accurate but also less time-consuming to obtain.

Preliminary results have so far confirmed this hypothesis, but would be an

interesting topic for further research.

Using aMonte-Carlo sampling technique, a non-Guassian likelihood can also

be used. This would make the modeling error sample possible to describe with a

more precise distribution. The 1Dmarginal distribution of the modeling errors

in both Appendix H.4 and Appendix H.5 shows that some outliers can be

detected. These outliers generally drag the estimated Gaussian model in the
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direction of higher variance. This trend could perhaps be modeled with e.g. a

Voigt profile, Poisson distribution, or a Cauchy distribution. Even if the 1D

marginal distribution can bemapped better using either of these distributions,

there is no guaranty that the spatial distribution is better matched. Onemight

also apply a normal score transformation of a Gaussian distribution to keep some

of the spatial correlations in the modeling errors, while providing a better match

to the 1Dmarginal distribution.

5.3 Non-stationarity in Physical Parameters

Statistical properties of physical parameters of the subsurface (acoustic

impedance, density, porosity, resistivity etc.) can generally be considered to be

spatially non-stationary (Bongajum et al., 2013; Bouchedda et al., 2017; Sabeti

et al., 2017). Althoughmethods exist for incorporating non-stationary in both

prior and likelihoodmodels (Aune et al., 2013), non-stationarity in statistical

properties of the subsurface are typically ignored in seismic AVA inversion.

Inverse solutions are instead conditioned on global stationary probability density

functions (Sabeti et al., 2017). These global estimates could for instance be

obtained from nearby wells.

As for the modeling errors, non-stationarity in the subsurface properties is

probably ignored because it is too difficult in quantify. A stationary Gaussian

prior model is furthermore convenient in terms of solving the probabilistic linear

least-squares problem, and is positive definite if the spatial correlation function is

positive definite. Positive definiteness is a useful mathematically property that

makes stationarity desirable. Stationary Gaussian distributions are also easy to

sample using e.g. Fast Fourier TransformMoving Average or Cholesky
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decomposition. Cholesky decomposition makes generating realizations from a

non-stationary Gaussian model possible, but is prone to be very inefficient when

sampling large models (Aune et al., 2013; Hansen et al., 2016). Although there

are somemathematical advantages and efficiency bonuses by using a stationary

prior model, it is ultimately unrealistic in terms of the complex geology of the

subsurface.

Aune et al. (2013) incorporate non-stationarity in the prior model by

conditioning it on nearby well logs with non-stationary in the physical

parameters. Sabeti et al. (2017) apply a spatial direct sequential simulation

technique with local variograms, which reflects the non-stationary in the physical

parameters. Nearby well logs plays a big role using both methodologies. The

results are therefore dependent on the quality of the well logs. Spatial anisotropy

is also considered in linearized seismic inversion (Bongajum et al., 2013).

Non-stationarity is achieved by combining different covariance matrices, which

are determined using the direction of maximum continuity for the seismic data.

However, this method requires the spatial anisotropy to be defined prior to

inversion both locally and globally. Using local rock-physical and geophysical

likelihoods, Jullum and Kolbjørnsen (2016) assesses local quantities related to

the posterior distribution of rock properties.

In contrast to these earlier approaches, the work in Appendix H.6 couples

non-stationarity to the variance of the physical parameter. The correlation

function is assumed to be known and stationary. The variance is analytically

obtainable through the statistical model and is coupled to the variance in the

seismic data. A localized variance estimator is defined within a neighbourhood.

The full non-stationary variance pattern is obtained using a sliding-window
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approach.

The variance estimates can be locally constrained in a hierarchical model (see

e.g. Appendix G). A variation of this methodology is applied by Asfaw andOmre

(2016) in order to predict non-stationarity in a precipitation data set. In Asfaw

andOmre (2016), the physical parameters are also what is being measured in the

data, which differs from the proposedmethodology in Appendix H.6, where the

prediction is conditioned on indirect seismic data. The variance is always

positive, and hence the resulting non-stationary covariance matrix is positive

definite. This allows the estimated variance to be used as a plug-in estimate in a

Gaussian prior model, and hence in the analytical solution for the probabilistic

linear least-squares inverse problem.

5.3.1 The philosophical crossroad

The proposedmethod has onemajor weakness. Because the data is used to

obtain information on the variance of the model parameters and subsequently

predict the values of the model parameters, this methodology clearly violates that

sources of information should be independent. In other words, data is used for

two purposes. This violation may reasonable be considered as a stopping point

for further discussion and implementation. As stated in the introduction the

posterior solution requires independence of information to provide correct

results. One should of course not violate this prerequisite, if the theory breaks

down. Yet, this puristic viewpoint is very difficult to fulfill in reality. It would, in

principle, require the person doing the inversion to never look at the data. A slight

glimpse of the data would probably directly or indirectly effect the choice of

forward model, prior model, and noise model, which should be established
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before the data enters the stage.

The traditional view of ”full independence” generally leads to non-robust and

inconsistent methods because the independence is most likely always violated

(Journel, 2002). In practice, a lot of people in the inversion community tend to

violate the independence of information, simply because it is highly impractical.

Furthermore, how does one determine in the first place whether or not

information is dependent or not?

Consider a person which explicitly assumes a Gaussian prior for a certain

experiment. Before the inversion the person looks at the data and then establishes

a mean for the model. Is the establishedmean then dependent on the data? The

choice of the mean, let alone the use of a Gaussian model, is still completely

arbitrary. On the other hand, the person has probably also acquired some

knowledge by looking at the data, so in some sense the choice of the mean is not

completely independent. In other words, it might be difficult to actually establish

what independence is in the first place.

Inversion results may have such apparent biases, that they can simply be

disregarded from having any physical substance. Is it then reasonable to redo the

inversion with a different prior model or noise model? If so, howmuch is the

independence of information then violated? Probably a lot, because the previous

inversion results would have guided the new choice of prior and noise model.

Does it make the new inversion results completely useless simply because of this

violation?

The dilemma above presents a philosophical crossroad for the person doing

the inversion. Howmuch is one allowed to look at the data in order to determine

things that should in principle be independent of the data. None? a little? some?
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or is everything allowed? The answer to this question is non-trivial and is still

unresolved. Consider the current problem of predicting acoustic impedance

from a line of seismic data. If one instead used the adjacent seismic line to infer

the variance in the prior model, would the sources of information then be

independent? The data would certainly not be used twice. Nonetheless, the noise

between the two data sets would definitely be correlated both in space and time

and would hence not be independent.

In statistics there is a long tradition for using data multiple times for different

purposes with the bi-product of loosing a certain amount of degrees of freedom.

This is a very practical approach to the issue, but does not answer the above

questions fully. As stated in Scales and Snieder (1998) one should at least make

an effort in not making the distinction between prior and data undesirably fuzzy.

This does not provide a definitive answer though. The so-called tau-model,
originally proposed by Journel (2002) is partly trying to resolve the issue of

dependency in the sources of information. In the tau-model the different sources

of information are aggregated given a certain scaling (i.e. ”tau-factor”).

The probability aggregationmethod is formalized by Allard et al. (2012). If the

information is completely independent the tau-factor is set to 1. The tau-model

then collapses down to the conjunction of information. For all dependent cases,

the tau-factor can be set to lower values. In this sense, the tau-model can be

considered a more general description of the inverse problem. Although this

formulation is quite elegant, it is difficult to use in practice. Firstly, how does one

tune these tau-factors? We have no direct measure to quantify these in the first

place. Secondly, the interpretation of tau-factors is also tricky. What does a

tau-factor of 0.7 signify exactly? How dependent are the data and in which sense?
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5.3.2 Prediction using the non-stationary variance estimates

In the following the practical notion that the data are allowed to be used for

several purposes is adopted while acknowledging that there is an issue of

dependency in the sources of information in the proposedmethodology. The

results from Appendix H.6 indicate that a heterogeneous variance pattern of the

physical parameters (in this case acoustic impedance) can be estimated directly

from seismic data using such an approach. The estimates are slightly

underestimating the true variance, which is in accordance with the loss of degrees

of freedom. The inverse solution shows a greatly improved posterior resolution

compared with the use of a prior model stationary variance.

Themethod is applied on a real data set, situated around a salt-diapir in the

danish North Sea. It is expected that physical parameters around the salt-diapir

should behave non-stationary. In accordance with this, the results show that

higher variances are found around the diapir. If the non-stationary variance

estimate is used for inversion, the resulting posterior distribution is most likely a

better description of the subsurface than using a prior model with stationary

variance. What is meant here by a ”better” description, is not only increased

precision in the prediction (i.e. the most probable model), but more importantly,

more trustworthy posterior uncertainty estimates. Since the diapir is of interest in

terms of hydrocarbon exploration, a better description provides a better risk

assessment for drilling, etc.

The results depend on the quality of the data and level of heterogeneity in the

subsurface. Themethod should obviously not be used if one expects the behavior

of the subsurface to be stationary. Using the constrained estimates from the

hierarchical estimator showed however that only small contrasts in subsurface
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variance is actually needed for the method to provide a better description of the

subsurface than a corresponding model with stationary variance. The final results

are unsurprisingly sensitive to the size of the local neighbourhood. A trade-off

should be made between having a certain minimum size of the neighbourhood

and not smoothing the results toomuch by having a large neighbourhood. One

has to assume a relation between the variance of the noise and variance of the

physical parameter. In Appendix H.6 a proportional relationship is assumed. This

poses the problem of determining a correct proportionality constant. The

constant is approximated using the assumed noise levels.

From the above it is clear that the method relies on an accurate description of

the noise on the data. Because the variance estimate of the physical parameter is

assumed to have a proportional relationship to the data variance, any unmodeled

feature in the seismic data will be interpreted in terms of variance of the physical

parameter. Regions of data with different noise, e.g. a ”bad” trace, will therefore

affect the variance estimate. If themethod is used in conjunction with e.g. a better

description of the modeling errors, the results may be substantially improved. A

better insight into the noise on the data would also provide a more reasonable

approximation of the proportionality constant. In the real data case, a relatively

conservative choice of noise levels is chosen. A better description of the noise

(including modeling errors) in space and time would probably create less

dependence between different data sets. Thus, the issue of independence would

be reduced.
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5.4 Inferring theNoiseModel

Proper estimation of data uncertainties is still basically unsolved in many

geophysical disciplines, including seismic inversion (Igel, 2017). From the

previous sections, the importance of correctly describing the uncertainties in

seismic data and the background theory should be clear. Traditionally, the noise

model is established prior to inversion. The uncertainty of specific measurement

equipment might be easily quantifiable. Many sources of errors in seismic data

are however more complex and correlated and are non-trivial to quantify.

In order to circumvent this obstacle, a hierarchicalmodel can be combinedwith

a sampling strategy to infer properties of the noise model as part of the inversion

(Gelman et al., 2014). In this paradigm, the data is used to ”decide” what is signal

and what is noise. Themajor upside of estimating the noisemodel directly during

the inversion is the removal of potential biases which may arise due to the

subjective choices when constructing the noise model in the classic paradigm.

Themethodology can also be extended to cover the inference of information

on the prior model (Malinverno and Briggs, 2004) and even the parameterization

of the problem (Sambridge et al., 2006). The latter is known as trans-dimensional

inversion and has recently been applied for large-scale seismic problems (Cho

et al., 2017). Regardless of which entity (e.g. prior model, noise model,

parameterization, etc.) is deemed inferable using a hierarchical approach, it adds

complexity to the stochastic model which may or may not be needed. The

elicitation of hyper distributions is another issue related to the methodology.

Buland andOmre (2003b) estimated seismic noise variance on AVA seismic

data using such an approach. Malinverno and Briggs (2004); Malinverno and
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Parker (2006) formalized the method for probabilistic linear least-squares

problems. Recently, properties of the noise model has been estimated as part of

the inversion in combination with trans-dimensional inversion (Bodin et al.,

2012; Dettmer and Dosso, 2012; Ray et al., 2013, 2016).

In Appendix H.3 the methodology proposed byMalinverno and Briggs

(2004);Malinverno and Parker (2006) is used in order to infer the variance of the

noise model as part of the inversion. The variance is treated as a hyper parameter

for the hyper distribution over the variance of the noise. A schematic

representation of the stochastic model can be seen in Figure G.1. Synthetic AVA

data is constructed using realizations from the Buland andOmre prior model

(Section 3.1) and the forward relationship in Equation 2.19. Using the arguments

from Section 4.3, correlated noise is primarily added to the forward response in

order to obtain the final AVA data sets. Three inversion case studies are presented

corresponding to different colors of Gaussian noiseCD:

CD = Cd + CT = σ2dIn + σ2TCT,shape (5.1)

In the first case, the color is assumed white (i.e. uncorrelated), thus σ2T = 0 and

σ2d is treated as a hyper parameter. In the second case the noise shapeCT,shape is

identical to the noise shape used to create noise in the data. This noise resembles

the shape of the data as in Equation 4.7. In the third case, an approximate

knowledge of the shape of the noise is used. Both σ2T and σ2d are treated as hyper

parameters in the two last cases.

The inversion results show that it is possible in all cases to accurately estimate

the variance of the uncorrelated noise σ2d on the data. However, because the

uncorrelated part is not the main component of the noise added to the data, it is
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not as crucial to estimate, as the correlated part. A simple uncorrelated noise

model does not allow the total variance of the noise to be recovered, and as a

consequence significant overfitting of the data is demonstrated. One cannot

expect the classic implementation of the inversion algorithm to fully capture the

complexity of the noise on the data.

If the correct shape of the noiseCT,shape is known prior to inversion, it is

possible to estimate the correct level of both correlated and uncorrelated noise on

the data. Inferring the noise level with the approximate noise shape, σ2T becomes

underestimated. The overfitting of data is not as significant as for the case with

the assumed uncorrelated noise shape. In summary, the results from Appendix

H.3 indicate that correlated noise amplitudes are difficult to estimate as part of

the inversion. The result will generally depend on the shape of the noise on the

data and the noise which is assumed. If such an approach is considered, good a

priori knowledge of the shape is required.

A counterargument to these findings is that unrealistic amounts of correlated

noise is perhaps added to the synthetic data compared to real seismic data, i.e. the

quality of the data is much lower than for real seismic data. It is difficult to

determine whether this is a valid point. On one hand, noisy data are processed by

experienced processors, and one would like to believe that the signal to noise

ratio is reasonable in the final data intended for inversion. On the other hand, as

described earlier it is difficult for humans to separate correlated noise from signal.

The gut-feeling that one might have regarding the level of noise on the data might

be misconstrued. Even data that look noise-less might be noisy.

The importance of the correlated noise should not be neglected in any case.

However, knowing the shape of the noise prior to inversion is a problem in itself,
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and as shown in Appendix H.3, only if the shape is described correctly will the

variance estimate be accurate. Themethodology can be extended to estimate

properties of the color of noise as well. Consider the covariance matrixCT,shape

describing the shape of the noise model:

CT,shape =
HCmHT

max(HCmHT)
(5.2)

If the range parameter (i.e. the correlation in time) in theCm is treated as a hyper

parameter, the color can then be inferred in the proposed setup. Themarginal

likelihood follows from Equation 4.6:

L(m) = (2π)−n/2|CD|−1/2 exp
(
− 1
2
(d− Gm)TC−1

D (d− Gm)
)

(5.3)

By sweeping over the hyper parameters a likelihood ”map” can be constructed,

showing regions of high and low likelihood depending on σ2T and σ2d. Figure 5.2

shows such a sweep of the hyper parameters σ2T and σ2d for different choices of

range parameter. The target amplitude of the noise variance is shown with a black

dot. The reason that the amplitude of uncorrelated noise σ2d is easy to estimate

using this approach is clearly visible in Figure 5.2. The peak likelihood value is

centered around a narrow band trending up and down, which indicates a high

sensitivity towards σ2d. The peak likelihood is placed around the target variance

for all possible combinations of σ2T and range. In contrast, less sensitivity in the

likelihood is shown for the variance of the correlated noise σ2T.

For the correct range of r = 0.005ms, the highest possible likelihood is found

around the target value. This explains why it is possible to obtain the correct
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Figure 5.2: Marginal likelihood for a sweep of hyper parameters (σ2T and σ2d) using differ-
ent Gaussian noise models with different ranges. The noise model is constructed using the
forward model. Each subplot displays the likelihood for a different range parameter. The
true variance level is marked with a black dot. The correct range, and hence true color of
the noise is r = 0.005 ms.
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estimate of σ2T if the correct shape is known in advance. Unfortunately, the

likelihoodmaps are almost identical for all choices of range parameter. This

indicates that there is practically zero sensitivity towards the range parameter with

this setup of the noise model. A sampling technique with a randomwalk (e.g. the

Metropolis-Hastings algorithm) would have difficulties in effectively estimating

the correlation range, and hence the color of the noise.

Onemight also be tempted to estimate the noise in a broader context to

remove further subjective prior assumptions. Let instead the shape covariance

CT,shape be described by a Gaussian correlation function as in Equation 3.6:

CT,shape = exp
[
−
(

TWT
r

)2]
(5.4)

By doing this the forward is left out of the noise model and the only remaining

assumption is the chosen correlation function, which in this case is Gaussian.

Because the angle stacks are correlated in time, the covariancematrix is correlated

for each trace. Themarginal likelihood for different correlation lengths is shown

in Figure 5.3. As in the previous case, the amplitude of the uncorrelated noise σ2d
is easy to determine and coincides with the target value for all choices of σ2T and

range. The likelihoodmaps indicate relatively strong sensitivity towards the range

parameter where the highest values are found around r = 0.008ms.
Unfortunately, the likelihood is highest for low values of σ2T. This means that σ2T is

bound to be underestimated using a sampling technique with a randomwalk

using this noise model. This is also in accordance with the findings in Appendix

H.3.

The examples with the likelihood for different covariance matrices indicate
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Figure 5.3: Marginal likelihood for a sweep of hyper parameters (σ2T and σ2d) using differ-
ent Gaussian noise models with different ranges. Each subplot displays the likelihood for a
different range parameter. The true variance level is marked with a black dot.
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that care should be taken when trying to infer the noise model as part of the

inversion. The less information provided prior to the inversion about the shape of

the noise, the worse the final estimation of the variance and the color most likely

is. A wrong shape of the noise could potentially lead to biases in the inversion

results even if the variance amplitudes are correctly estimated as demonstrated in

Appendix H.3. If the methodology is extended to e.g. estimate non-stationarity in

noise, this might further reduce the trustworthiness of the posterior models. The

results indicate that one is probably better off by providing a reasonable estimate

of the shape of the noise before applying the methodology. This estimate could

e.g. come from estimating modeling errors as suggested previously.

The estimate of correlated noise binds together all the proposed efforts to

improve linear probabilistic seismic inversion.
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”Once again you’ve put your keen and penetrating mind to the
task and as usual come to the wrong conclusion!”

J.K. Rowling (1999), Harry Potter and the Prisoner of
Azkaban

6
Conclusion

This thesis investigates and identifies some of the major challenges in

probabilistic inversion of seismic data. Themain focus is on the popular linear

least-squares solution and the inversion of AVA seimic data, which requires a

Gaussian prior model and a linear-Gaussian likelihood.

Non-stationarity in the variance of the prior Gaussian model can be estimated

directly from the data prior to inversion using maximummarginal likelihood

estimators and a sliding window technique. A non-stationary variance model is

more in accordance with the expected heterogeneous appearance of the

subsurface. Improved posterior resolution of inversion results are acquired
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compared with using a stationary prior model.

Seismic data is likely to contain noise which is correlated. If not accounted for,

correlated errors are seemingly a hugely important issue in probabilistic inversion

of seismic data. Correlated noise might be coupled to the use of inaccurate linear

physics and the processing sequence of the raw data. Results show that it is

possible to quantify and estimate the effect of both sources of errors. This gives

rise to a better estimation of the uncertainty on seismic data. Taking modeling

and processing errors into account improves posterior resolution and ultimately

leads to more trustworthy inversion results.

Properties of the noise model can be estimated as part of the inversion of

seismic data. In such a setting the complexity of the likelihood plays an important

role in correctly estimating the properties of the noise model. The appearance of

the likelihood is highly affected by correlated noise, as witnessed in Figure 5.2-5.3.

If such an approach is used in estimating the properties of the noise model, care

should be taken because overfitting data is a latent risk of the method.

Until a computationally feasible non-linear probabilistic inversion strategy

based on FWMbecomes available, least-squares solutions will still be the primary

tool for large scale seismic inversion. This requires that methods are developed in

order to quantify some of the errors that are associated with using linear forward

approximations and Gaussian distributions. If these effects can be accounted for,

a temporary middle ground can potentially be reached.

Previous efforts have mainly focused on providing more realistic Gaussian

prior models (e.g. bimodal, skewed, etc.) which may provide more realistic

depictions of the subsurface. The noise model and hence likelihood also plays a

huge part in seismic inversion. A proper description of the correlated noise will
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provide more trustworthy posterior uncertainty estimates. Yet, this seems to be

an area which has been slightly overlooked in previous research. A fundamental

change in the view of correlated noise might be both tedious and unpleasant but

is necessary because demands for accurate descriptions of the subsurface

increases. Quantifying modeling errors and taking them into account is an

important first step in this direction.
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A
Snell’s Law

Snells’ law describes the refraction and reflection of an incoming wave (the

incident wave) at an interface between two continuous media with different

acoustic, and hence elastic properties. Consider twomedia with different elastic

properties (vp, vs, and ρ) as illustrated in Figure A.1. The incoming pressure wave

is split into four components when reaching the interface between the twomedia.

Two waves are reflected back into medium 1. The first one remains a pressure

wave and is denoted Rpp. The second reflected wave is transformed into a shear

wave denoted Rps. Similarly as for the two reflected waves, the incident wave is

refracted into medium 2 in two different wave phases. We describe these asTpp
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Figure A.1: Reflection and refraction of incoming pressure wave at an interface. Snells’
law describes the relationship between incoming (indicent pressure wave) and outgoing
wave-phases. Illustration is taken from Yilmaz (2001).
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andTps for the pressure and shear wave components respectively. Snell’s law

simply states, that the ratio between sin() of the outgoing wave and the velocity in

the transporting medium is constant:

p =
sin(Θ1)

vp1
=

sin(Θ2)

vp2
=

sin(φ1)

vs1
=

sin(φ2)

vs2
(A.1)

The constant p is often referred to as the ray-parameter in the literature (see e.g.

Zhang and Brown (2001); Shearer (2009)). In common words, the first term

p = sin(Θ1)
vp1

states that the incoming angle is equal to the outgoing angle for the

pressure wave reflection. This should analogously be familiar to many pool

players. The general assumption in Snell’s law is that no energy is lost at the

interface. In reality, there is a small dissipation of energy at the interface due to

friction of the molecules in the media. However, on a larger scale, this energy loss

is deemed negligible and Snell’s law is assumed valid.
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B
TheGaussianDistribution

Themultivariate Gaussian probability density function p(r) for a variable rwith

mean μ and covarianceC is given by (Johnson andWichern, 2007):

p(r) = (2π)−n/2|C|−1/2 exp
[
− 1
2
(r− μ)TC−1(r− μ)

]
(B.1)

where n is the dimension of the vector r and |C| denotes the determinant of the

covariance matrixC. A compact notation form is r ∼ Nn(μ,C).
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C
MomentumEquation

The following derivation of the momentum equation is mainly based on Shearer

(2009). Themomentum equation (or equation of motion) follows from applying

Newton’s second law of motion on a continuous medium. The law simply states

that any force F on a body is proportional to the massm and acceleration a of the

body:

F = ma (C.1)

The law thereby offers a relationship between forces andmotion. The total forces

F from a stress field can be subdivided into forces acting on the surfaces Fi and

body forces Fbody
i acting on the whole body (e.g. gravity or electromagnetic

137



Figure C.1: Surface forces on an infinitesimal cube dx1dx2dx3. Surface forces acting on the
dx2dx3 planes in regards to the x̂1 direction. The force is given as the traction t(x̂1) over the
surface area dx2dx3. Illustration is taken from Shearer (2009).

forces):

F = Fi + Fbody
i (C.2)

Let us consider an infinitesimal body with volume dx1dx2dx3 as illustrated in

Figure C.1. The force acting on any surface can be described as the product

between the perpendicular traction vector t and the surface area (Kundu et al.,

2012), because the traction is force per unit area. The force F(x̂1) acting on the

surface dx2dx3 can e.g. be calculated as:

F(x̂1) = t(x̂1)dx2dx3 = τx̂1dx2dx3 =


τ11
τ21
τ31

 dx2dx3 (C.3)

The last two equations follow from the linear stress tensor operator τ defined in

Equation D.2. As noted in Shearer (2009), a net force is only exerted if a spatial
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gradient exists in the stress field. The traction at each end side of the cube is then

different and hence F(x̂1) ̸= F(−x̂1). The traction vector t(x̂1) can be written as

the change in the stress field:

t(x̂1) =
∂

∂x1


τ11
τ21
τ31

 dx1 =
∂

∂x1
τ̂1dx1 (C.4)

The surface force F(x̂1) can then be written as:

F(x̂1) =
∂

∂x1
τ̂1dx1dx2dx3 =

∂τ i1

∂x1
dx1dx2dx3 (C.5)

where τ i1 is index notation. The forces acting on the other sides of the

infinitesimal cube follow analogously from the above. The total sum of forces

acting on the surface of the cube Fi is then given by:

Fi = F(x̂1) + F(x̂2) + F(x̂3) (C.6)

=

(
∂τ i1

∂x1
+

∂τ i2

∂x2
+

∂τ i3

∂x3

)
dx1dx2dx3 (C.7)

=

3∑
j=1

∂τ ij

∂xj
dx1dx2dx3 (C.8)

= ∂jτ ijdx1dx2dx3 (C.9)

where ∂jτ ij implies summation over all surfaces. The sum of body forces Fbody
i

acting on the infinitesimal cube is proportional to the volume of the cube:

Fbody
i = fidx1dx2dx3 (C.10)
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where fi is the body force. Finally, the massm of the cube canmore generally be

written as the density ρ times the volume. The acceleration a of the cube can also

be written as the second time derivative of the displacement ui. Substituting all

the above into Equation C.1 yields the momentum equation:

ρdx1dx2dx3
∂2vi
∂t2

= ∂jτ ijdx1dx2dx3 + fidx1dx2dx3 (C.11)

Letting the common term dx1dx2dx3 cancel out, the momentum equation for a

continuous medium of any size is given by:

ρ
∂2ui

∂t2
= ∂jτ ij + fi (C.12)

A comprehensive derivation of the equation of motion can be found in e.g. Aki

and Richards (2002). Themomentum equation can be split into solutions for the

P- and S-waves respectively (Shearer, 2009) by taking the divergence (∇·) and

curl (∇×) of the equation, where∇ is the vector differential operator:

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
(C.13)

140



D
The Stress Tensor

The following is based on Shearer (2009). A traction vector t(n̂) = [t1, t2, t3]
describes the force per unit area exerted on a surface of a continuous medium in

direction 1,2, and 3. The traction vector is illustrated in Figure D.1 for a small

infinitesimal plate. The direction of the traction is referring to a unit vector

n̂ = [n̂1, n̂2, n̂3] pointing orthogonally to the plane. The traction acting

ortogonally to the plane (along n̂) is known as normal stress, whereas traction

acting along the plane is known as shear stress. In order to describe the traction t
as a function of n̂we need the introduction of a stress matrix τ describing all the

stresses acting on the plane. The stress tensor defines a linear mapping of the
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Figure D.1: Traction vector t on a infinitesimal plane. The orientation of the plate is de-
scribed by the normal vector n̂. Illustration is taken from Shearer (2009).

traction to normal vectors.

t(n̂) = τn̂ (D.1)

The stress tensor consists of nine stress components τ ij that define the full stress

state in a continuous medium (Shearer, 2009; Kundu et al., 2012):

τ = τ ij =


τ11 τ12 τ13
τ21 τ12 τ13
τ31 τ12 τ13

 (D.2)

where the indices represent the three dimensions. A traction across any plane

with a certain orientation (n̂) is then given by combining Equation D.1 and

Equation D.2:

t(n̂) =


τ11 τ12 τ13
τ21 τ12 τ13
τ31 τ12 τ13

 n̂ =


τ11 τ12 τ13
τ21 τ12 τ13
τ31 τ12 τ13



n̂1
n̂2
n̂3

 (D.3)
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E
Finite DifferenceMethod

The finite difference method (FDM) is a method for approximating partial

derivatives and is considered a fundamental method in numerical calculus. Many

physical phenomenas are connected with gradients, e.g. the heat equation,

momentum equation, continuity equation, etc. Themethod therefore has many

applications in physics. It is postulated as the simplest and typical way of

approximating partial differential operators (Saad, 2003).

Beacuse infinite limits (e.g. δx → 0) are not allowed in numerical calculus, the

FDMusesΔx > ε, where the ε expresses a round-off that is associated with the

machine precision andΔx is the finite difference. In other words, the numerical

solutionmay never reach the infinite limit but will only reach an infinitesimal
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small number depending on the operating machine. The FDM introduces two

types of errors which should be accounted for during usage:

• The first error is the above-mentioned round-off that introduces loss off

precision due to computers rounding of decimal quantities. The error is

relatively small but can easily increase through accumulation due to reuse of

round-off numbers through extendedmodeling.

• The second error is known as the truncation error or discretization error.

The FDM is based upon discretizing a function into small parts to be

evaluated. The parts are separated by node-points, which can be seen as the

(x0, x1, x2, . . .) in figure E.1. The error is introduced through the Taylor

series that gives the value for the next step between two node-points on the

grid:

f(x+Δx) = f(x) + f′(x)Δx+
f′′(x)
2!

Δx2 +
f′′′(x)
3!

Δx3 + . . .+ Rn (E.1)

where Rn is the truncation error. The size of this error is therefore

dependent on the level at which the Taylor series is truncated.

The level of accuracy should be counter weighted by the need for the model to be

simple, i.e. it is of course possible to create a model that only produces an

insignificant error by including a lot of terms, but that would also mean that the

model would becomemore complex to evaluate. The level of truncation should

also be considered with regards to the type of differential equation one intend to

solve. For instance, a third-order differential equation would need the inclusion

of the first four terms (i.e. the third order) of Equation E.1 to account for the
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Figure E.1: The figure illustrates the way the FDM makes use of discretizing a function
f(x) into a grid of equal spacing.

third-order differential. To solve a simple parabolic differential equation the use

of the first three terms (i.e. the second order) of the Taylor series (Equation E.1)

proves to be a stable solution:

f(x + Δx) = f(x) + f′(x)Δx +
f′′(x)
2!

Δx2 + Rn (E.2)

By the use of the central difference, the value of f′(x) can be evaluated to relatively

high accuracy:

f(x + Δx)− f(x − Δx) ≃ 2f′(x)Δx (E.3)

⇒ f′(x) ≃ f(x + Δx)− f(x − Δx)
2Δx

(E.4)

If the finite differenceΔx is sufficiently small, the first derivative can be directly
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approximated by a truncation after the first two terms in Equation E.1 (the first

order Taylor series):

f(x + Δx) = f(x) + f′(x)Δx + Rn (E.5)

⇒ f′(x) ≃ f(x + Δx)− f(x)
Δx

(E.6)

In summary, there are four logical steps when applying finite differences (from

Gerya (2010)):

1. The infinite number of geometrical points in a continuum needs to be

replaced by a finite amount of grid nodes.

2. At these nodes, physical properties must be defined.

3. Partial differential equations at these nodes are substituted with discretized

finite difference linear equations. These linear equations should make a

relation between the physical properties

4. By solving the resulting set of linear equations, unknowns for the

node-points can be obtained.
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F
NormalMoveout

A schematic representation of the hyperbolic trajectory of arrival time t as a
function of offset for a wave traveling between source and receiver can be seen in

Figure F.1. Consider the ray passing through the subsurface from the source and

being reflected back to a receiver at the surface. From Pythogaras’ theorem

follows:

d2 = h2 + (x/2)2

4d2 = 4h2 + x2 (F.1)
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Figure F.1: Top: A reflected ray path, Bottom: Corresponding travel time curve as a
function of offset. Figure taken from Shearer (2009).

If a constant velocity is assumed within the layer, then 2d = vt, where v is the

velocity in the layer. Similarly for a receiver at zero-offset, 2h = vt0 where t0 is the

two-way travel time (TWT). Substituting this into Equation F.1 yields:

v2t2 = t20 + x2 (F.2)

⇒ t(x) =
√

t20 +
x2

v2
(F.3)

Using the relation in Equation F.3 offers a way of computing corrected travel

times from the two-way-travel time and offset under the assumption of a known

velocity field.
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G
HierarchicalModels

In statistics, a classical stochastic model contains observable variables which are

conditioned on some conditional parameters. Usually these parameters are

considered non-probabilistic. Alternatively, the parameters can be treated with a

probabilistic specification. They will therefore depend on another set of

parameters. In principle, these parameters could also be specified

probabilistically and thus depend on yet another set of parameters. The

additional parameters are typically known as hyper parameters to discern them

from the original parameters. The hyper parameters follow a distribution, which

is similarly known as a hyper distribution. The additional hyper parameters and

distributions form a hierarchy of dependency between parameters in the
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dobs CD

h

mCm

μm

Figure G.1: The stochastic model as a directed acyclic graph. The nodes represent
stochastic variables and the black arrows show probability dependencies. The orange arrow
between model parameters m and observed data dobs indicates the deterministic relation-
ship of the forward problem.

stochastic model. Stochastic models of this kind are therefore known as

hierarchical models. Hierarchical models have increased in popularity in recent

years for understanding multi-parameter problems (Gelman et al., 2014).

As a simple example, consider the model parametersm. Letm be Gaussian

with mean μm and covarianceCm. The model parameters have a deterministic

relationship with observed data dobs through a forwardmodel. Let the data dobs
be Gaussian as well, with covarianceCD. Say, one is unsure of the appearance of

the noise covarianceCD. For instance, wemight not know the exact variance of

the noise σ2d or exact range in the correlation function, but might instead be

certain that it is not zero and it will not exceed some extreme threshold value. We

can then replace the variance or range parameter in the correlation function with

hyper parameters h. The noise model and thereby the data, are then

probabilistically dependent on the hyper parameters h. The hyper distribution of

the hyper parameters could then bemodeled with an uniform distribution with

our threshold values. The proposed stochastic dependencies in the model are

visualized in the directed acyclic graph in Figure G.1.
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Seismic forward modeling errorsfrom linear approximations to Zoeppritz equations
Rasmus Bødker Madsen* and Thomas Mejer Hansen, University of Copenhagen

SUMMARY

A linearised form of Zoeppritz equations combined with the
convolution model is widely used in inversion of amplitude
versus offset (AVO) seismic data. This introduces a ’model-
ing error’ related to the forward model compared to the full
Zoeppritz equations. Here a methodology for quantifying the
modeling error caused by using such an approximation in AVO
modeling is demonstrated. First, a sample of the error related
to using a linearised approximation to the Zoeppritz equations
is generated. It is demonstrated that the modeling error de-
pends on the degree of subsurface variability as described by
the prior assumptions. Then, it is illustrated how this sample
can be described by a correlated Gaussian probability density.
Finally, we demonstrate how the modeling error can be ac-
counted for in linearised AVO inversion, and in this way avoid
biases in the inversion results.

INTRODUCTION

Reflection seismic AVO data is sensitive to relative changes
in the acoustic impedance and the ratio between p-wave and
s-wave velocities vp/vs, which can be heavily impacted by
the e.g. water saturation. Therefore, inversion of reflection
seismic AVO data is widely used in petroleum exploration, as
variations in vp/vs ratio is potentially resolvable. Any inverse
approach is based on some choice of how to solve the forward
problem, i.e. for the present problem, how to compute the AVO
data set related to a specific choice of subsurface model of elas-
tic properties. Typically the parametrisation is some variation
of a triplet of elastic parameters. For instance p-wave veloc-
ity vp, s-wave velocity vs and density ρ or acoustic impedance
(AI), vp/vs-ratio and density.

In this study case the forward problem amounts to comput-
ing the AVO response from a specific elastic model. The best
solution to the forward problem would be to use some form
of full waveform solution, which in principle should provide
the correct forward response to the subsurface model. Even
though methods exist to perform full waveform inversion, the
computational costs restrict the application for small problems
at lower resolutions (Virieux and Operto, 2009). In practice,
a widely used forward model is a combination of a linearised
approximation to Zoeppritz equations combined with the con-
volution model.

Zoeppritz equations are used to describe the partitioning of
seismic wave energy at different angles of incident at a single
interface between two layers with different elastic properties
(Aki and Richards, 2002). Zoeppritz equations lay the founda-
tion for AVO analysis.

For practical purposes however, some form of linear approxi-
mation is usually applied to the full Zoeppritz equations. The
success of the simpler approximations can be attributed to their

usefulness in practical applications as well as their ease of
evaluation and interpretion (Castagna and Backus, 1994; Mavko
et al., 2009). Among the more popular ones are Aki and Richards
equation (Aki and Richards, 1980) and a further simplification
done by Shuey (1985). A detailed review of these can for in-
stance be found in (Castagna and Backus, 1994). Buland and
Omre (2003) introduced a Bayesian linearised AVO inversion
technique by adapting an extension to the Aki and Richards ap-
proximation originally proposed by Stolt and Weglein (1985).
This technique renders the AVO inverse problem into a linear
inverse Gaussian problem, for which an analytical solution, in
form of a Gaussian model, can be found.

Modeling error
In reality any specific choice of forward modeling, leads to a
’modeling error’ (Tarantola and Valette, 1982; Hansen et al.,
2014). Modeling errors related to AVO data can stem from a
variety of sources such as using a 1D forward code to reflect a
3D physical system; the use of the acoustic wave equation as
opposed to the anisotropic visco-elastic wave-equation; imper-
fections in data processing; uncertain wavelet estimates. See
also Thore (2015).

Modeling errors are also connected to the use of approxima-
tions to Zoeppritz equations. Approximations to Zoeppritz
equations are, in general, associated with the least amount of
modeling error for smaller incidence angles. As a general rule
of thumb, most approximations of the Zoeppritz equations are
assumed valid (implying insignificant modeling errors) for in-
cidence angles less than around 30◦ (Shuey, 1985; Castagna
and Backus, 1993; Mavko et al., 2009). However, if the varia-
tions in the elastic properties are very smooth, implying small
contrasts, the approximation may be valid for incidence angles
above 30◦. This relationship is confirmed when comparing the
reflection coefficient for different angles at a single interface.
Using the 4 AVO classes proposed by Castagna and Backus
(1994), Haase (2004) showed that not only does the error de-
pend on the contrast between the two layers at the interface,
but also the type of lithology at the boundary.

However, to our knowledge, little has been published quantify-
ing the modeling error combined with the convolution model
for a time-series of elastic properties. Buland and Omre (2003)
did a qualitative measure on the modeling error related to a
smooth Gaussian distribution of elastic parameters, by visu-
ally comparing the results of using the Zoeppritz equations and
their own approximation. They concluded that no significant
modeling error arises from the forward approximation using
such a Gaussian type a priori model. In general though, little
work has been done to quantify modeling errors related to the
use of approximations to Zoeppritz equations combined with
the convolution model.

Recently a number of studies have emphasized the need to
quantify and account for modeling errors in general in geo-
physical inverse problems (Hansen et al., 2014; Thore, 2015;



Quantifying the forward modeling error

Valentine and Trampert, 2015). Here the approach developed
by Hansen et al. (2014) will be adapted to simulate, model and
account for modeling errors caused by the use of approxima-
tions to the full Zoeppritz equations combined with convolu-
tion model.

THEORY

The Zoeppritz equations (Zoeppritz, 1919) provide the full an-
gular reflectivity at an interface between two media with dif-
ferent elastic properties for a plane interface wave.

Aki and Richards
The ’classic’ approximation proposed by Aki and Richards
(1980), stems from a parametrisation of p-wave and s-wave ve-
locities and the density (vp, vs and ρ). The Aki and Richards
approximation make use of the averages of these elastic pa-
rameters over the interface (vp, vs and ρ) as well as the con-
trasts ∆vp, ∆vp and ∆ρ . For a small percentile change in elastic
properties the reflectivity can be approximated by

R(θ)≈ avp(θ)
∆vp

vp
+avs(θ)

∆vs

vs
+aρ (θ)

∆ρ

ρ
(1)

where the coefficients are given by

avp(θ) =
1

2cos2 θ
(2)

avs(θ) =−4vs
2

vp
2 sin2

θ (3)

aρ (θ) =
1
2
(1−4

vs
2

vp
2 sin2

θ). (4)

The full derivation can be seen in e.g. Aki and Richards (2002);
Mavko et al. (2009). A popular way of rearranging the terms
in the Aki and Richards approximation, into three major terms,
was performed by Shuey (1985). These terms are the AVO in-
tercept, gradient and a third order correction term. Here we
will focus on the further linear approximation done by Buland
and Omre.

Buland and Omre
Buland and Omre (2003) adapted the following forward ap-
proximation by Stolt and Weglein, that expands the Aki and
Richards approximation, where the reflection now also is time-
dependant

R(t,θ)≈ avp(t,θ)
∂

∂ t
lnvp(t)

+avs(t,θ)
∂

∂ t
lnvs(t)+aρ (t,θ)

∂

∂ t
lnvρ (t) (5)

The time-dependency in the coefficients avp(t,θ), avs(t,θ) and
aρ (t,θ) is simply a generalisation of the Aki & Richards co-
efficients (eq. 2-4) with the averages vp and ρ being time-
dependent. In order to solve this equation, it is here assumed

that these averages can be described by a known background-
model. In practice this can be achieved using the mean value
of all vp and ρ values as the averages vp and ρ . By mak-
ing the material parameters follow a log-gaussian distribution,
they can be restricted from attaining negative values (Buland
and Omre, 2003). Despite this further requirement of a known
background-model, the Buland and Omre approximation of-
fers one great advantage. It provides an analytical solution to
the forward problem and provides a way of doing Bayesian
linear inversion of seismic AVO data.

Both approximations are based on the common assumption of
small-contrasts in the elastic properties at all interfaces.

Convolutional Model
A seismic trace can be obtained using the convolution model:

S(t) =W (t)∗R(t)≡
∫ ts

0
W (τ)R(t − τ)dτ (6)

where S(t) is the seismic trace, R(t) is the reflectivity series
(earth response), W (t) is the wavelet (source-time function),
and ts is the duration of the source input. The convolutional
model requires the wavelet to be known prior to convolution.
This is often not the case and the wavelet is estimated from
nearby wells, i.e. an effective wavelet is used. The convolu-
tional model is discussed in more detail by Yilmaz and Do-
herty (2000). In this study a Ricker wavelet with decreasing
center frequency from 50Hz at zero-offset to 25Hz at the high-
est incident angle is used.

Calculating modeling error
For one specific 1D model of elastic parameters the model-
ing error, Serror(t), can simply be calculated by taking the dif-
ference in the seismic response from a forward approximation
and the full Zoeppritz equations for all traces in a seismic AVO
gather:

Serror(t) = Szoep(t)−Sapprox(t) (7)

=W (t)∗Rzoep(t)−W (t)∗Rapprox(t) (8)

In case an a priori probability, that quantifies prior expecta-
tions for subsurface variability in the elastic parameters exists,
then a sample of the corresponding (and unknown) probabil-
ity density describing the modeling error can be simulated. As
suggested by Hansen et al. (2014), a number of realizations
from the prior can be generated for each of which a realization
of the corresponding probability density describing the mod-
eling error can be computed using Eqn. 7. This will provide
a sample of the probability density describing the modeling
error. Thus, the existence of a prior probability over the elas-
tic model parameters must be available, in order to be able to
quantify the modeling error in this way. Using e.g. Buland
and Omre (2003) such a prior assumption is chosen explicit
prior to inversion. In other cases a prior may be implicit in the
choice of inversion model.

The approach described above will provide a sample of the
probability density describing the modeling error. In some
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Figure 1: This figure displays one realisation from the contin-
uous (top row) and the discrete (bottom row) prior considered.

cases such a sample can be described by a Gaussian proba-
bility, in which case a full description of a Gaussian modeling
error can be estimated from the sample of the modeling error
as a mean and a covariance (Hansen et al., 2014). If the Gaus-
sian model can be adopted, then it can account for the Gaussian
modeling in a linear inverse Gaussian problem, such as the one
considered by Buland and Omre (2003), simply by addition of
the mean and the covariance of the measurement uncertainty
and the modeling error (see Tarantola (2005) for details).

RESULTS

Examples
In order to quantify the prior expectations for the subsurface
variability, we have chosen one continuous and one discrete
distribution of the elastic properties. The priors are chosen to
represent extremes of how the subsurface could be represented.
Figure 1 shows a realisation from both priors.

The continuous prior is identical to the one presented by Bu-
land and Omre (2003), and is a Guassian type model with a
Gaussian covariance type. The covariance type has a corre-
lation coefficient of 0.7 between the elastic parameters. The
continuous prior with strong correlation between the model
parameters is one extreme case of the subsurface, in the sense
that it produces very smooth transitions. The contrasts in elas-
tic parameters at an interface is therefore relatively small and
can be regarded as a ’best case’ scenario for the forward ap-
proximations based on the small-contrast approximation.

The other extreme is the discrete case. Here we have imple-
mented a truncated plurigaussian prior as described by Oliver

et al. (2008) that allows simulation of complex arrangements
of lithofacies. As can be seen in the lower plot in Figure 1, a set
of four unique discrete layers are simulated with rapid shifts in
lithofacies. The elastic parameters of the discrete prior emu-
lates a simplified model of what can be found in North Sea
green-sand environments.

In a real geological setting we would suspect the elastic param-
eters of the subsurface to be somewhere in between these two
extremes, i.e. a mixture of smoothly varying elastic parameters
within each layer and sharp discontinuous boundaries between
some layers.
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Figure 2: Standard deviation of forward responses from 1000
prior realisations plotted against incident angle using the Zoep-
pritz equations (dashed blue line). Also plotted is the stan-
dard deviation of a 1000 realisations sample of the forward-
modeling error applying the Buland and Omre approximation
(Red). On top is shown the continuous case while the bottom
plot shows the discrete case

Forward modeling error
1000 realisations of the forward modeling error due to the use
of the linearised small contrast approximation to the Zoep-
pritz equations as opposed to the full Zoeppritz equations is
obtained using Eqn. 7. These realisations represent a sample
of the modeling error. The standard deviation of these realisa-
tions at different incident angles are calculated for the Buland
and Omre forward approximation and shown in Figure 2. For a
relative measure on the severity of the modeling error we have
also plotted the standard deviation from 1000 forward realisa-
tions using Zoeppritz equations as the signal. The signal to
’modeling error noise’ ratio is generally very high for angles
close to zero-offset and decreases with increasing incident an-
gles. This is true for both cases, but the decrease is unsurpris-
ingly more rapid for extreme case of a discrete prior. Using the
mean of the signal and the modeling error as a signal-to-noise
ratio (SN) = 15 is reached in the 25−30◦ interval and SN = 5
within the 40− 45◦ for the continuous case. Meanwhile, the
SN = 15 is already reached between 15−20◦ and decreases to
SN = 5 at 25−30◦ for the discrete case.

Forward-modeling error covariance model
Assuming the modeling error is Gaussian, a covariance ma-
trix describing the forward-modeling error is constructed from
the sample of 1000 modeling error realisations, as proposed by
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Hansen et al. (2014). Three realisations from this covariance
model are simulated and plotted in Figure 3 against the actual
modeling error. The realisations from the forward modeling
error shows the same characteristics as the actual modeling er-
ror for both cases. Visually it seems that the low and high-
frequencies in the forward-modeling error are well resolved
for both the discrete and continuous case. In other words, it
is very hard, if not impossible, to distinguish between the ac-
tual modeling error and the realisations of the modeling error
in case its prior position is unknown, which suggest that the
choice of a Gaussian model to represent the modeling error
may be valid.
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Figure 3: Actual modeling error plotted against three realisa-
tions from a Gaussian random field described by a covariance
matrix. The modeling error is shown for the Buland and Omre
forward. Each row represents a different forward approxima-
tion. The left column shows the estimated covariance matrix.
The second column is the actual modeling error from a for-
ward. The last three columns are realisations from the Gaus-
sian probability representing the modeling error. The scaling
is the same for both cases of realisations and covariance matri-
ces.

Inversion
The upper plot in Figure 4 displays the results from 1000 pos-
terior realisations of a linear AVO bayesian inversion as pro-
posed by Buland and Omre (2003). The Zoeppritz forward
response of the continuous prior realisation seen in Figure 1
with added uncorrelated noise is used as reference data. The
noise level is set according to a SN = 15 for each incident an-
gle, where the signal is the mean of 1000 forward realisations
as described earlier. Initially (top figure) the modeling error is
disregarded during inversion. This results in some features that
seem well resolved but lie well beyond the 95% confidence in-
terval and represents modeling errors being fitted as data. This
bias happens especially where the contrasts in model parame-
ters are fairly high, for instance around 2170-2190 ms and also
around 2250 ms. On the lower plot in Figure 4 we have ac-
counted for this modeling error under the assumption that it is
Gaussian and that it can be described by the covariance matrix
shown in Figure 3. Here it seems that there are no artifacts in
the inversion results and that modeling error is handled. The
reference model generally lie within the 95% confidence inter-
val as would be expected. The inverted results indicate that the
modeling error is properly accounted for.
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Figure 4: Linear bayesian inversion performed on reference
data set (red line) with and without accounting for forward-
modeling errors. Posterior realisations (grey), mean (black)
and 95 % confidence interval (dashed line) is shown.

CONCLUSION

We have successfully illustrated and quantified the modeling
error from applying a linear approximate solution to Zoeppritz
equations. The error depends on the degree of subsurface vari-
ability as described by the prior assumptions. Assuming the
error to be Gaussian distributed, we propose a correction for
this modeling error. The error is significantly larger when us-
ing discrete a priori models as opposed to a continuous model
as shown in Figure 2. Approximating the modeling error by a
Gaussian covariance and a mean makes it possible to account
for the error in inversion algorithms based on least-squares. Fi-
nally it is shown that even small modeling errors related to a
smooth Gaussian prior can contribute to significant biases in
inversion results.
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Abstract Inversion of AVO (Amplitude vs. Offset) seismic data is widely used to infer 
information about reservoir properties from reflection seismic data. The most 
common method for solving the AVO forward problem (computing the AVO 
response from an Earth model) is applying a small-contrast approximation to the 
Zoeppritz equations. This allows a linear formulation of the forward problem, and 
hence an efficient linear AVO inversion. 

However, the small-contrast approximation will introduce a modeling error when 
solving the forward problem. In this study we demonstrate that the modeling error is 
closely linked to the choice of prior information, in form of a geostatistical model. The 
modeling error for a number of different geostatistical models, continuous or discrete, 
reflecting realistic subsurface, is analyzed, and the modeling error is quantified in form 
of a ‘signal to modeling error’ estimate. It is found that when the prior model is 
continuous and smoothly varying (as when considering a normal distribution with a 
Gaussian covariance model) then the small-contrast approximation is quite accurate. 
However, when the prior model contains discrete layer transitions, then modeling 
error due to using the small-contrast approximation increases to a level that, if not 
accounted for, could significantly affect linear AVO inversion results. The modeling 
error is increasingly significant for larger offsets. 

Finally, we demonstrate how the modeling error due to the use of the small-contrast 
approximation can be characterized by a correlated Gaussian model. This allows 
accounting for the modeling error in linearized AVO inversion, without introducing 
artefacts or bias in the inversion results. This would further allow for data from larger 
offsets to be included in the inversion. 
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On inferring the noise in probabilistic seismic AVO inversion using hierarchical Bayes
Rasmus Bødker Madsen*, Andrea Zunino and Thomas Mejer Hansen
Niels Bohr Institute, University of Copenhagen

SUMMARY

A realistic noise model is essential for trustworthy inversion of
geophysical data. Sometimes, as in case of seismic data, quan-
tification of the noise model is non-trivial. To remedy this, a
hierarchical Bayes approach can be adopted in which proper-
ties of the noise model, such as the amplitude of an assumed
uncorrelated Gaussian noise model, can be inferred as part of
the inversion. Here we demonstrate how such an approach can
lead to substantial overfitting of noise when inverting a 1D re-
flection seismic NMO data set. We then argue that usually the
noise model is correlated, and suggest to infer the amplitude of
a correlated Gaussian noise model. This provides better results
than assuming an uncorrelated model. In general though, the
results suggest that care should be taken using the hierarchical
Bayes approach to infer the noise model.

INTRODUCTION

Data (d2RN) are the unique forward response from a physical
model (g) given some model parameters (m 2 RM):

d = g(m) (1)

In nature, observed data (dobs) are not noise-free, i.e. dobs =
g(m)+e . The inverse problem of inferring values of the model
parameters from the observed data are therefore non-unique
(Sen and Stoffa, 1996; Tarantola, 2005).

The chosen likelihood function, which measures how well the
model parameters match the observed data, is dependent on
the distribution of noise (Box and Tiao, 1992). The likelihood,
and hence the final posterior distribution of model parameters,
can be very sensitive to noise-level and noise models (Thore,
2015). The noise model should ideally include information
about measurement and experimental errors as well as account
for imperfections in the forward model and/or simplifications
due to the parametrization (Dosso and Holland, 2006). How-
ever, it is often argued that since no theory is exact, all features
that are not captured by the theory are just observational errors,
and no distinction should be made between different types of
noise (Sen and Stoffa, 1996).

In the classical Bayesian stochastic inference paradigm infor-
mation on the uncertainty distribution of the data should be
established a priori as part of the likelihood function. If for in-
stance a Gaussian noise model is assumed, the corresponding
Gaussian likelihood takes the following form (Box and Tiao,
1992)

p(dobs|m) = exp
✓
�1

2
(dobs �g(m))TCD(dobs �g(m))

◆

(2)
where CD is the data covariance model. The data covari-
ance can be split into contributions from measurement error

Cd and theory error CT, assuming independence of the two.
(Mosegaard and Tarantola, 2002)

CD = Cd +CT . (3)

An extension to the classical paradigm is offered through the
use of the hierarchical Bayesian approach, where parameters
of the noise (and of the prior) can be inferred from the observed
data (Gelman et al., 2014). A hierarchical scheme has been
used in various geophysical inverse problems in order to infer
information about noise level from data (Buland and Omre,
2003b; Malinverno and Briggs, 2004; Malinverno and Parker,
2006; Bodin et al., 2012; Dettmer and Dosso, 2012; Ray et al.,
2013).

Buland and Omre (2003b) explicitly used a hierarchical Bayes
formulation of the inverse problem, enabling noise-level es-
timation as well as wavelet estimation in a joint AVO (Am-
plitude Versus Offset) inversion scheme. They concluded that
estimating the seismic noise model as part of the probabilis-
tic inversion is viable. However, in their real data case only
negligible improvements were gained on posterior variance of
model parameters, compared to estimating the noise covari-
ance and wavelet prior to AVO inversion. As opposed to Bu-
land and Omre (2003b), we will analyze the posterior reso-
lution (not the posterior variance) obtained using hierarchi-
cal Bayes with different assumptions about the noise model.
Specifically we will investigate whether the noise is underesti-
mated, which will result in an apparent smaller posterior vari-
ability. However, such reduced posterior variability might re-
flect non-existent features appearing as a result of fitting noise
as data. We propose a set of synthetic tests similar to that of
Buland and Omre (2003a). The synthetic tests are based on
a reference model from which possible posterior biases in the
model parameters can be assessed alongside the posterior vari-
ance.

THEORY AND METHOD

Forward model and prior information
The synthetic data (AVO gather) are created following the
methodology of Buland and Omre (2003a). The problem here
is to infer information about the three elastic parameters: P-
wave (vp), S-wave (vs), and density (r) from a seismic AVO
gather. The observed data can be expressed as a linear convo-
lution forward problem with some added noise:

dobs = Gm+ e = WADm+ e (4)

where W is the wavelet matrix which is convolved with the re-
flectivity series ADm. The prior distribution of model parame-
ters p(m) is Gaussian and the three elastic parameters have an
internal correlation of 0.7. This prior corresponds to the ”Well
B” scenario of (Buland and Omre, 2003a). In order to allow
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a least-squares solution, the prior distribution of the model pa-
rameters is assumed to be log-Gaussian, so:

m = [ln(vp/v0
p)

T, ln(vs/v0
s )

T, ln(r/r0)T]T ⇠ Gauss(µµµ,CM)
(5)

where µµµ is the prior expectation of the model parameters, v0
p,

v0
s , r0 are reference values, and CM describes the prior covari-

ance. The noise on the observed data is e= euncor+ecor, where
the noise model is Gaussian and split into two components as
in equation 3. Here we let Cd be the uncorrelated white noise
component and CT be the correlated colored noise component,
so that:

euncor ⇠ Gauss(0,Cd), ecor ⇠ Gauss(0,CT) . (6)

A tricky aspect of noise in seismic AVO data is the fact that
the error is often systematic (Riedel et al., 2003). In order to
test the hierarchical Bayesian approach of inferring noise, the
colored noise is set to:

CT = s2
TCT,shape = s2

T
WADCM(WAD)T

max[WADCM(WAD)T]
. (7)

This covariance matrix gives the covariance of the ”prior data
distribution”. Noise realizations from this distribution would
tend to imitate data. By normalizing with the maximum value,
the variance of the noise can be set according to s2

T. Colored
noise with signal-to-noise ratio (SNR) = 1.25 is added to the
synthetic data, which is in the poor end of what can be ex-
pected from seismic data. In practice this is achieved by hav-
ing the standard deviation sT as the standard deviation of the
reference model’s forward response (signal) divided by 1.25.
The covariance of the uncorrelated noise is simply the identity
matrix I times the variance:

Cd = s2
d Cd,shape = s2

d I . (8)

A SNR = 30 is chosen for the uncorrelated noise. This number
is perhaps slightly generous towards the filtering processes. On
the other hand, white uncorrelated noise is different in wave-
length from the seismic signal and can often easily be filtered
out during processing of the raw data (Vecken and Da Silva,
2004). Most of the remaining noise would therefore tend to
resemble the observed data in the frequency domain.

Bayesian linearized AVO inversion
Since the inverse problem is linear Gaussian, the Gaussian
likelihood in equation 2 can be used with the linear operator
G. The posterior distribution p(dobs|m) ⇠ Gauss(µ̂µµ, ĈM) is
then also a multivariate Gaussian distribution (Tarantola and
Valette, 1982), where the expectation and covariance are given
by:

µ̂µµ = µµµ +(WADCM)TC�1
D (dobs �WADµµµ) (9)

ĈM = CM � (WADCM)TC�1
D WADCM (10)

This analytical solution of the Bayesian linear inverse prob-
lem, which is also referred to as the least-squares solution, de-
scribes the full posterior distribution of model parameters with
uncertainty under a Gaussian assumption.

Hierarchical Bayes
In a hierarchical model, the conditional parameters (e.g. model

parameters or noise model) for the observed data are them-
selves given a probabilistic specification. Consequently, the
conditional parameters are then also dependent on another set
of parameters (Gelman et al., 2014). These additional param-
eters are typically known as hyperparameters h = [h1,h2, . . . ].
Uncertainty now includes both model parameters and hyper-
parameters. Therefore a prior distribution p(h) should be set
for the hyperparameters (hyperprior) that reflects the initial un-
certainty on these. The posterior distribution of hyperparam-
eters (hyperposterior) is then determined by inversion of the
observed data. For linear inverse Gaussian problems, as the
one outlined above, Malinverno and Briggs (2004) propose a
computationally efficient approach of hieracrchical Bayes, that
we adopt here. The marginal likelihood of the observed data
conditional on the hyperparameters, in case a linear Gaussian
solution to the problem exists, is given by

p(dobs|h) =
"

det ĈM
detCM

# 1
2

exp

�1

2
(µ̂µµ �µµµ)TC�1

M (µ̂µµ �µµµ)
�

1

[(2p)N detCD]
1
2

exp

�1

2
(dobs �Gµ̂µµ)TC�1

D (dobs �Gµ̂µµ)
�
.

(11)

Using the sampling strategy suggested by Malinverno and
Briggs (2004), the posterior probability distribution of the
hyperparameters are essentially sampled using a Metropolis-
Hastings algorithm (Mosegaard and Tarantola, 1995). At each
step a random walk goes through an exploration phase where a
candidate value of the hyperparameters is proposed in vicinity
of the current. Thereafter, an exploitation phase either accepts
or rejects the candidate based on the marginal likelihood in
equation 11. The posterior for the model parameters is sam-
pled with a Gibbs sampler (Sen and Stoffa, 1996). The model
parameters are at each step conditioned on the current accepted
set of hyperparameters. For our proposed sampling strategy
we let the step-length of the random walk in the hyperparam-
eters be dynamic for the first 1000 iterations, with a target ac-
ceptance rate of 30%. This is a commonly used practice in
Metropolis-Hastings algorithms in order to secure a more effi-
cient burn-in period and subsequent sampling algorithm (Gel-
man et al., 1996).

SYNTHETIC TESTS

In the following, we present three case studies: the first as-
suming uncorrelated data noise, the second assuming a known
shape of the noise, and the third assuming only an approximate
knowledge of the shape of the noise. Regarding the simulated
data, the standard deviations of the realization of the error are
sd = 0.0039 and sT = 0.0949, respectively, so the noise is
mainly correlated. The standard deviation on the final com-
bined noise realization is sd+T = 0.0947.

Hierarchical Bayes inversion - Case 1
In the first inversion example we assume that all noise on the
data is uncorrelated. The only hyperparameter that is needed in
the hierarchical model is then h1 = sd in equation 8. We want
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On inferring noise using hierarc. Bayes

Figure 1: Posterior distribution of p(m|dobs) and p(h|dobs),
log-likelihood and cross-correlation for case 1 of hierarchical
Bayes inversion using CD = h2

1Cd

to replicate a setting where little prior knowledge of the noise
level exists, but the noise is assumed to be uncorrelated (e.g.
Buland and Omre (2003b); Malinverno and Briggs (2004);
Bodin et al. (2012)). In these circumstances it seems appro-
priate to have a relative non-informative hyperprior distribu-
tion. We therefore set a rather wide uniform hyperprior dis-
tribution for the standard deviation of the uncorrelated noise:
p(h1) ⇠ Unif(0.0001,1). Realizations and statistics of the re-
sulting posterior distribution of model parameters p(m|dobs)
and hyperparameters p(h|dobs) are shown in Figure 1, as well
as analytically calculated values for acoustic impedance (AI)
and the ratio between P-wave and S-wave velocity (vp/vs). Ar-
eas where the reference model (red line) are not found within
the 90% confidence interval is marked with yellow. Ideally,
90% of the profile should be non-yellow for the posterior res-
olution to be trustworthy for this interval. However, this is not
the case as the reference model is found inside the confidence
interval considerably less than 90%. This is especially true for
vp/vs where the reference model is only found within the 90%
confidence interval 46% of the time. This indicates a severe
case of overfitting the data. The hyperparameter h1, instead,
is actually well determined when comparing the true standard
deviation (black dot) to the histogram in Figure 1. However,
the red dot only indicates the level of uncorrelated noise on the
data sd. The total standard deviation of the error realization
sd+T (blue dot) is heavily underestimated as seen in Figure 2.
Since the noise on the data is apparently too similar in its struc-
ture to the actual signal, the colored noise is then considered
as part of the signal by the algorithm. This explains both the

Figure 2: Histograms of the hyperposterior distributions for all
MCMC runs p(h|dobs). Notice the logarithmic scale used for
Case 1 (top plot).

overfitting of the posterior for the model parameters and the
algorithms ability to correctly determine the variance of un-
correlated noise on the data while underestimating the actual
total noise level.

The correlation between adjacent samples is not high, as the
correlation decreases to the average level quickly form the last
sample. The pattern of log-likelihood and cross-correlation is
similar for all the following MCMC runs in general and are
therefore not shown.

The overfitting of the hierarchical Bayes inversion with the un-
correlated noise model becomes even more apparent in Fig-
ure 3. Here the percentage of the reference model being inside
the confidence interval is plotted as a function of the size of
the confidence interval. It is clearly visible that the posterior
distribution of the elastic variables is not capturing the refer-
ence model for all confidence intervals. The apparently small
posterior variability is actually reflecting non-existent features,
i.e. noise being fitted as data. The result of the hierarchical in-
version is similar to just applying a linear AVO inversion with
sd = 0.0039. To evaluate the consistency of the results from
case 1, the algorithm is run an additional time. The histogram
of the hyperposterior of h1 in Figure 2 for the secondary run
shows the same pattern as for the first run. This indicates a
certain level of consistency in the MCMC results.

Hierarchical Bayes inversion - Case 2
In the second test case we assume a known shape of colored
noise CT,shape, i.e. we test whether it is possible at all to in-
fer the variance of the noise knowing the reference color. The
standard deviation of the colored noise is set as an additional
hyperparameter sT = h2. The noise model then takes the fol-
lowing form: CD = h2

1Cd,shape + h2
2CT,shape. Again, we set a

rather broad uniform hyperprior distribution for the standard
deviation of the correlated noise: p(h2) ⇠ Unif(0.0001,1).
The result for two runs are summarized in Figure 2 and 3. Both
MCMC runs show approximately the same hyperposterior dis-
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On inferring noise using hierarc. Bayes

Figure 3: Percentage of reference model being inside the confi-
dence interval, i.e. non-yellow areas in Figure 1), as a function
of confidence interval. The uppermost figures are calculated
using Bayesian linearized AVO inversion for reference.

tributions p(h|dobs). The variance of the correlated noise h2
(red dot) is slightly overestimated, whereas the variance of the
uncorrelated noise h1 is well-determined. The nearly-correct
estimation of variance level, results in the reference model be-
ing within the confidence interval following the ideal line in
Figure 3. The model therefore appears to neither over- nor un-
derfit the data. The results are similar to doing a linear AVO
inversion with the reference noise model.

Hierarchical Bayes inversion - Case 3
Since the correct shape of the noise is never readily available in
a real-world scenario, we propose to estimate or assume some
correlation of the noise prior to inversion. We assume that
the noise is showing smoothness comparable with the wavelet.
Furthermore, the noise is correlated between the individual
angle-stacks. The correlation between angle stacks is believed
to vary slightly as a function of angle. This is set up in the
following manner

Wcorr =

2

66664

b1I b1+b2
2 I . . . b1+bn

2 I
b2+b1

2 I b2I . . . b2+bn
2 I

...
...

. . .
...

bn+b1
2 I bn+b2

2 I . . . bnI

3

77775
. (12)

where I is the identity matrix with the size of one individual

angle stack. A simple model can easily be derived by set-
ting bbb = b1,b2, . . . ,bn = 1. Using the variance of each an-
gle stack on the observed data offers an estimate for bbb . These
beta values could possibly also be obtained using optimiza-
tion of the marginal likelihood in equation 11. In our case we
use bbb = [1,0.99,0.98,0.95,0.92,0.90,0.88]. The final approx-
imate shape of the colored noise is then:

CW,shape =
WWcorrWT

max[WWcorrWT]
(13)

Using the same approach as for case 2, the approximate
noise model takes the following form: CD = h2

1Cd,shape +

h2
2CW,shape. The variance of the uncorrelated noise is as for

case 1 and 2 correctly estimated as both histograms are cen-
tered around the correct value (black dot) in Figure 2. How-
ever, the variance of the uncorrelated noise is underestimated
when comparing the hyperposterior distribution of p(h2|dobs)
with the correct value (blue dot). As for both case 1 and case 2,
there is consistency between the results from the two MCMC
runs. Figure 3 shows improvements of case 3 compared to case
1 for all elastic parameters but the vp/vs ratio, which is still not
captured by the posterior distribution. This indicates that over-
fitting of the data is still present using the approximate shape,
but is nevertheless reduced compared to simply assuming an
uncorrelated shape of the noise.

CONCLUSION

Our results in general indicate that caution should be taken
when inferring the noise as an additional parameter in inver-
sion. It seems that the assumption of uncorrelated noise in
case 1 is not good for inferring the correct noise level on data
with correlated noise. The hierarchical Bayes approach was in
all cases able to accurately estimate the variance of the uncor-
related noise on the data. However, using the approach of case
1 the total variance of the noise is not recovered and significant
overfitting of the data was demonstrated. Choosing the correct
shape of the noise, as in case 2, eliminates the overfitting, and
a correct variance is estimated even for a wide hyperprior. The
results from case 2 indicate that it is possible to estimate a cor-
rect variance of the noise model using the data. Finally, for
case 3 with an approximate shape of the noise, the variance es-
timate of the noise is improved compared to case 1. The model
is however still overfitting the data. Especially vp/vs shows
an apparent smaller posterior variability that is not capturing
the true model. In a real world case it is probably reasonable
to assume that substantial knowledge about the general noise-
level is available to constrain the wide hyperprior distribution
(Gelman et al., 2014). This could potentially improve the re-
sult for an approximate noise model. For our synthetic tests,
using an approximate shape of the correlated noise offers an
improvement on the noise-level estimate compared with using
an uncorrelated noise model. Further work could nonetheless
be done to obtain more reliable estimates for an approximate
shape of the noise, which could further improve the posterior
resolution of the hierarchical Bayes approach in general.
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Estimation and accounting for the modeling error in probabilistic
linearized amplitude variation with offset inversion

Rasmus Bødker Madsen1 and Thomas Mejer Hansen1

ABSTRACT

A linearized form of Zoeppritz equations combined with
the convolution model is widely used in inversion of ampli-
tude variation with offset (AVO) seismic data. This is shown
to introduce a “modeling error,” compared with using the
full Zoeppritz equations, whose magnitude depends on the
degree of subsurface heterogeneity. Then, we evaluate a meth-
odology for quantifying this modeling error through a prob-
ability distribution. First, a sample of the unknown probability
density describing the modeling error is generated. Then, we
determine how this sample can be described by a correlated
Gaussian probability distribution. Finally, we develop how
such modeling errors affect the linearized AVO inversion re-
sults. If not accounted for (which is most often the case), the
modeling errors can introduce significant artifacts in the in-
version results, if the signal-to-noise ratio is less than 2, as is
the case for most AVO data obtained today. However, if ac-
counted for, such artifacts can be avoided. The methodology
can easily be adapted and applied to most linear AVO inver-
sion methods, by allowing the use of the inferred modeling
error as a correlated Gaussian noise model.

INTRODUCTION

Amplitude variation with offset (AVO) reflection seismic data, and
the corresponding amplitude variation with angle (AVA), can be used
to analyze how the reflected energy from a layer boundary depends
on the offset between a source and a receiver (or the angle of inci-
dence ϕ at the boundary) and the elastic properties around a specific
layer boundary (Castagna and Backus, 1993). AVO analysis has been
successfully used to identify possible hydrocarbon reservoirs directly
from seismic data (Castagna and Backus, 1993; Castagna et al.,

1998). Inversion of NMO corrected prestack seismic data (AVO data)
has also been widely used to infer information about the elastic
parameters in a deterministic (e.g., Cooke and Schneider, 1983)
and a probabilistic framework (e.g., Buland and Omre, 2003).
AVO data are always associated with uncertainty, which can be

classified into “measurement uncertainty” and modeling error. The
term modeling error (sometimes also referred to as “modelization
error” or “theoretical error”) is, in this paper, referring to the use
of an inexact theory in the modeling (prediction) of the result
of measurements as opposed to errors arising from inaccurate mea-
surements due to, e.g., instrument errors (Tarantola and Valette,
1982b; Sen and Stoffa, 1996; Downton, 2005; Tarantola, 2005).

An abundance of work exists that acknowledges modeling errors
related to AVO modeling (Gerstoft and Mecklenbräuker, 1998; Bu-
land and Omre, 2003; Riedel et al., 2003; Dosso and Holland, 2006;
Chen et al., 2007; Rabben et al., 2008; Bosch et al., 2010; Aune
et al., 2013).
A widely considered modeling error with respect to AVO data is

related to the use of approximations to the Zoeppritz (1919) equa-
tions, which allow the AVO/AVA response at a plane-layer interface
to be computed analytically. These approximations are typically
based on the small-contrast approximation given by Aki and Richards
(1980) and are further developed by, e.g., Shuey (1985) and Castagna
and Backus (1993). These approximations are used for AVO analysis
and inversion.
Most approximations of the Zoeppritz equations are assumed to

be valid (implying insignificant modeling errors) for incidence an-
gles θ < 30° (Shuey, 1985; Castagna and Backus, 1993; Buland and
Omre, 2003; Mavko et al., 2009). If the variations in the elastic
properties are assumed to be very smooth, implying small contrasts,
the approximation may be valid for incidence angles θ > 30°. Fur-
thermore, by using the average angle between the incidence and
transmitted angle, the modeling error can be decreased in general
(Downton and Ursenbach, 2006).
Even for small incidence angles (less than 30°), systematic errors

have been shown to arise in linearized AVO inversion due to the

Manuscript received by the Editor 26 June 2017; revised manuscript received 19 September 2017; published ahead of production 21 November 2017;
published online 11 January 2018.

1University of Copenhagen, Niels Bohr Institute, Copenhagen, Denmark. E-mail: rasmus.madsen@nbi.ku.dk; tmeha@nbi.ku.dk.
© 2018 Society of Exploration Geophysicists. All rights reserved.

N15

GEOPHYSICS, VOL. 83, NO. 2 (MARCH-APRIL 2018); P. N15–N30, 10 FIGS., 2 TABLES.
10.1190/GEO2017-0404.1

D
ow

nl
oa

de
d 

01
/1

2/
18

 to
 1

30
.2

25
.2

38
.1

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



modeling error of applying a linear operator as a forward model
(Downton, 2005; Rabben et al., 2008). The problem is most severe
using two-term approximations (Downton, 2005). In this case, sig-
nificant systematic errors for the gradient estimate can be detected.
Further, linear approximations tend to produce false predictions, or
artifacts in noncontinuous and nonsmooth subsurface models (Stolt
and Weglein, 1985).
Thus, modeling errors related to using approximations to the

Zoeppritz equations have been widely considered. Yet, little work
has been done to quantify this modeling error and to account for this
modeling error as part of inverting AVO data.
Here, we develop the approach proposed by Hansen et al. (2014)

to simulate, model, and account for modeling errors in relation to
AVO modeling. Specifically, and as a first example, the widely used
small-contrast approximation of the Zoeppritz equations will be in-
vestigated.
We expect such modeling errors to represent a lower limit of

the full set of modeling errors inherent in AVO data. A variety of
sources for modeling errors exist in seismic data, such as using a
1D convolutional model to reflect a 3D physical system, the use
of the acoustic-wave equation as opposed to the anisotropic
visco-elastic wave equation, imperfections in data processing, gen-
eral anisotropy considerations, the effects of processing the raw
data, the coupling of data to physics within the forward model, un-
certain wavelet estimates, and uncertainty on the low-frequency
model. (see also Ball et al., 2015; Li et al., 2015; Thore, 2015).
For example, we expect higher magnitude modeling errors related
to using the Zoeppritz equations as opposed to using the full wave
equation. However, as shown in this paper, even disregarding this
lower limit of modeling errors can potentially lead to significant
biases when such AVO data are inverted without accounting for
modeling errors.
First, we introduce the approximate forward model and describe

the modeling error associated with it. This is followed by a discus-
sion on how to estimate and quantify this error. This is done in a
probabilistic framework. First, a set of realizations representing a
sample of a (unknown) probability distribution describing the mod-
eling error is generated. Then, it is demonstrated that this sample
can be reasonably described by a multivariate Gaussian probability
density. Finally, we investigate the possibility of accounting for
(and ignoring) the forward modeling error during probabilistic lin-
ear inversion of seismic AVO data (as in Buland and Omre, 2003),
considering different levels of measurement uncertainty.

LINEARIZED AVO FORWARD MODELING

In the following, we will be using the term AVO as synonymous
with AVA. Perhaps, the most correct approach to solve the AVO
forward problem (i.e., simulating an AVA gather) is to use some
form of full-waveform modeling to simulate shot gathers, followed
by a NMO correction and sorting according to angle of incidence ϕ,
to obtain a set of AVA gathers. It is however computationally de-
manding, and especially if used as part of an inverse problem, it
becomes impractical (Virieux and Operto, 2009). It is also argued
that in real-world cases, processing the raw seismic data such that it
enables the use of a simpler forward problem is often advantageous
(Claerbout et al., 2004). AVO data are, for example, processed such
that each data point can be associated with the reflection at a spe-
cific point in the subsurface. The Zoeppritz equations allow an ana-
lytical relation between the amplitude of reflections and elastic

parameters around an interface in the subsurface. In practice, a
widely used forward model to simulate AVO data is a combination
of a linearized approximation to Zoeppritz equations combined with
the convolution model.
The success of the simpler approximations can be attributed to

their ease of evaluation and interpretation (Castagna and Backus,
1993; Mavko et al., 2009), and their ability to linearize the AVO
inverse problem (Buland and Omre, 2003).

1D linearized AVO forward modeling

The Zoeppritz (1919) equations describe the full set of angle-
dependent reflectivities at a plane interface between two media with
different elastic properties for a plane wave.

The Aki and Richards forward model

Aki and Richards (1980) propose a small-contrast approximation
to Zoeppritz equations, in which the reflection coefficient, as a func-
tion of incidence angle ϕ can be computed from the elastic param-
eters above and below the interface using

RðϕÞ≍avPðϕÞ
ΔvP
vP

þ avSðϕÞ
ΔvS
vS

þ aρðϕÞ
Δρ
ρ

; (1)

where the coefficients are given by

avPðϕÞ ¼
1

2 cos2 ϕ
; (2)

avSðϕÞ ¼ −
4vS2

vP2
sin2 ϕ; (3)

aρðϕÞ ¼
1

2

�
1 − 4

vS2

vP2
sin2 ϕ

�
; (4)

where vP, vS, and ρ represent the average P-wave, S-wave, and den-
sity over the interface, whereas ΔvP, ΔvP, and Δρ represent elastic
contrasts over the interface. Equation 1 is valid for a small percentile
change in elastic properties, i.e., for a small contrast between layers.
The assumption of small contrasts is linked to the relative change

in contrasts ΔvP∕vP, ΔvS∕vS, and Δρ∕ρ. We will refer to this
choice of AVO forward model of reflectivities as the “Aki and Ri-
chards forward model.”
Note that equation 1 is a better approximation if the average angle

at the interface is used, as opposed to the incidence angle (Downton
and Ursenbach, 2006).

The Buland and Omre forward model

Buland and Omre (2003) adapt the following forward approxi-
mation proposed by Stolt and Weglein (1985), which expands the
Aki and Richards approximation, in which reflection coefficients
are now also time dependent:
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Rðt;ϕÞ≍avPðt;ϕÞ
∂
∂t
ln vPðtÞ þ avSðt;ϕÞ

∂
∂t
ln vSðtÞ

þ aρðt;ϕÞ
∂
∂t
ln vP: (5)

The difference terms in equation 1 are in equation 5 substituted
with the partial derivative of the logarithmic value of each material
parameter, e.g., ∂∕∂t ln vPðtÞ replaces ΔvP∕vP. This substitution is
valid only for small contrasts in the elastic parameters.
The time dependency in the coefficients avPðt;ϕÞ, avS ðt;ϕÞ, and

aρðt;ϕÞ is a generalization of the Aki and Richards coefficients
(equations 2–4) with the time-dependent averages vP, vS, and ρ.
To solve this equation, it is here assumed that these averages are
described by a known background model.
This allows a linear relation between the derivative of the model

parameters (the logarithm of the elastic parameters) and the reflec-
tion coefficients

R ¼ ADm; (6)

where A is the linear operator composed of the coefficients avP ðt;ϕÞ,
avSðt;ϕÞ, and aρðt;ϕÞ from equation 5 andD is the derivative matrix.
Wewill refer to this choice of AVO forward model for reflectivities as
the “Buland and Omre forward model.”

The linear convolution model

A seismic trace is obtained using the convolution model:

SðtÞ ¼ WðtÞ � RðtÞ ≡
Z

ts

0

WðτÞRðt − τÞdτ; (7)

where SðtÞ is the seismic trace, RðtÞ is the reflectivity series (earth
response), such as given in for example equations 1 and 5, andWðtÞ
is the wavelet (source-time function), where ts is the duration of
the source input. Evaluating the AVO forward problem using the
Zoeppritz equations (to obtain a seismic trace SzoepðtÞÞ thus amounts
to first computing the reflection coefficients using the Zoeppritz

equations, followed by a convolution with a wavelet. This is a non-
linear process.
By applying the convolution model for several angles of inci-

dence, each with a possibly unique wavelet, a linear relationship
between AVO seismic data and the elastic model parameters using
equation 6 is written as

dAVO ¼ WR ¼ WADm; (8)

where W is a convolution matrix containing the wavelet. Buland
and Omre (2003) introduce a Bayesian linearized AVO inversion
technique by adapting the linear relation in equation 8 when the
wavelet is known. This relation is considered the “full Buland and
Omre AVO forward model” and allows a full description between
model parameters and AVA data using a linear theory.

Calculating the forward modeling error

For one specific 1D elastic model, the modeling error Serror (re-
lated to a specific elastic model) is calculated as the difference
(residual) between the seismic signal from the full Zoeppritz equa-
tions SzoepðtÞ and the seismic signal from the approximate forward
model SappðtÞ:

SerrorðtÞ ¼ SzoepðtÞ − SappðtÞ; (9)

¼ WðtÞ � RzoepðtÞ −WðtÞ � RappðtÞ; (10)

where RzoepðtÞ is the reflectivity series calculated with the Zoeppritz
equations and RappðtÞ is the one calculated with an approximate for-
ward model (equation 1 or 6). For a single realization from a Gaus-
sian probability density identical to “well B” in Buland and Omre
(2003), the AVO forward response calculated using Zoeppritz equa-
tion and the Buland and Omre forward model are shown alongside
the modeling error (equation 9) in Figure 1. The modeling error is
increasing with angle of incidence.

Figure 1. AVO (AVA) data obtained using the full Zoeppritz and the Buland and Omre forward model for a realization from a Gaussian
probability density (the small reflectivity model) identical to that of Buland and Omre (2003). On the right, the corresponding forward mod-
eling error is shown. The elastic model used to generate these forward responses is shown in Figure 2.
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QUANTIFYING THE FORWARD-MODELING
ERROR

Hansen et al. (2014) demonstrate how to quantify the modeling
error probabilistically through a probability density, θðdjmÞ. The
main idea is to generate a large sample of an assumed (unknown)
probability density reflecting the modeling error. To do this, a source
of the modeling error has to be identified, and quantified probabilisti-
cally, such that realizations of the probability density describing the
source of the modeling error are generated. An algorithm that can
sample the probability density will suffice, and the actual probability
density itself need not be known. The source of the modeling error
can for example be subsurface variability and uncertainty related to
the wavelet.
In some cases, the obtained sample of the modeling error can be

described by a Gaussian probability, in which case, a full descrip-
tion of a Gaussian modeling error can be estimated from the sample
of the modeling error as a mean and a covariance (Hansen et al.,
2014). If the Gaussian model is adopted, then it can account for the
Gaussian modeling error in a linear inverse Gaussian problem, such
as the one considered by Buland and Omre (2003), by addition of
the mean and the covariance of the measurement uncertainty and the
modeling error (for details, see Mosegaard and Tarantola, 1995;
Tarantola, 2005).

Forward-modeling error

As an example, we consider two different types of geostatistical
subsurface models to illustrate how to sample and quantify the as-
sociated modeling error. These two models, a small-contrast and a
large-contrast model, respectively, represent extreme cases of sub-
surface variability. Figure 2 shows a realization from both models.
Arbitrarily large amounts of realizations of these geostatistical mod-
els are generated that all respect the assumed statistical properties.
The “small-contrast” model is identical to the one presented by

Buland and Omre (2003), and it is defined as a Guassian probability
density. The correlation between the elastic parameters is 0.7. The
choice of a Gaussian-type covariance model results in smooth mod-
els, in which the contrasts in elastic parameters at an interface are
relatively small. The small-contrast prior model can therefore be
regarded as a “best-case” scenario for the forward approximations
based on the small-contrast approximation.
The other extreme is a “large-contrast” prior model, in which

contrasts in the elastic parameters are high. The model is based
on a truncated plurigaussian prior distribution that allows simulation
of complex arrangements of lithofacies (Armstrong et al., 2011). As
seen in the lower plot in Figure 2, a set of four unique discrete layers
are simulated with rapid shifts in lithofacies. The elastic parameters
of the large-contrast prior emulate a simplified model of what is

found in North Sea green-sand environments
(Svendsen et al., 2012). The large-contrast prior
model may represent a “worst-case” scenario for
the use of the small-contrast approximation.
In a real geologic setting, the elastic parame-

ters of the subsurface are expected to be some-
where in between these two extremes.
The convolution model requires the wavelet to

be known. Wavelet estimation is an inverse prob-
lem in itself. Here, it is assumed that the wavelet
is known and is a Ricker wavelet with linearly
decreasing center frequency from 50 Hz at zero
offset to 25 Hz at the largest incidence angle
(ϕ ¼ 50°). The interval between each trace is
Δϕ ¼ 5°. This yields 11 traces. For 100 time
samples, the data (dAVO) are of size Nd ¼ 1100.
An example of synthetic data calculated using
the small-contrast prior is shown in Figure 1. In
total, 100 time samples times the three elastic
parameters gives Nm ¼ 300 model parameters
(m ¼ ½lnðvPÞ⊤; lnðvSÞ⊤; lnðρÞ⊤�⊤).
Using one realization from either model, one

realization of the modeling error de ¼ ½Serror;ϕ¼0;
Serror;ϕ¼5; : : : ; Serror;ϕ¼50� is calculated using
equation 9. One thousand of these modeling error
realizations are computed, which represent a
sample of the (unknown) probability distribution
describing the modeling error. The average stan-
dard deviation of this sample at different inci-
dence angles is calculated for the Buland and
Omre forward (equation 8) and the Aki and
Richards forward (equation 1 plus 7), and it is
shown in Figure 3. For the Aki and Richards for-
ward, the average angle ϕavg between the inci-
dence angle and the transmitted angle is used
instead of the incidence angle, as described by

Figure 2. (a) One realization from the small-contrast statistical model and (b) the large-
contrast statistical model considered.
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Downton and Ursenbach (2006). For the Buland and Omre forward,
results are shown using the incidence angle and the average
angle.
The average standard deviation introduces a way to measure the

amplitude of the modeling error at different incidence angles. For a
relative measure on the severity of the modeling error, we compare
with the magnitude of the data signal. The data signal is obtained as
the average standard deviation of a sample of 1000 forward realiza-
tions using the Zoeppritz equations (i.e., to obtain the average stan-
dard deviation of the signal, not the error). Comparing this signal
(black line) with the modeling error of each approximation (dashed,
dotted, and light-gray line) in Figure 3, a visual signal-to-noise ratio
(S/N) is obtained.
Both forward approximations show increasing amplitude of the

modeling error with the increasing angle of incidence, in agreement
with Figure 1. For the small-contrast model (the uppermost plot),
the modeling error of the Buland and Omre forward model (the dot-
ted and dashed lines) is higher than the Aki and Richards forward
model (the light gray line) for all incidence angles. This is due to
the necessary additional small-contrast assumption (logarithmic ap-
proximation) in the Buland and Omre forward model. Especially,
for angles of incidence ϕ > 35°, the S/N becomes low for the Bu-
land and Omre forward model because the average modeling error
rises. Meanwhile, the average S/N is relatively
high for the Aki and Richards forward model
due to a generally low modeling error.
Similar trends are visible for the large-contrast

model (the lowermost plot). However, the S/N is
considerably lower and more significant for both
forward models. This is because both forward
models rely on the assumption of small contrasts
in the elastic parameters, which is not provided
by the large-contrast prior model. The S/N is still
high for both models for lower angles of inci-
dence (ϕ < 20°). At larger angles of incidence,
the S/N becomes considerably lower for both for-
ward models. This culminates in an S∕N ¼ 1 for
the Buland and Omre forward model with inci-
dence angle (dotted line) for angles of incidence
ϕ > 40°. This implies that the average modeling
error has the same amplitude as the seismic sig-
nal for these wide incidence angles. Interestingly,
the average modeling error is actually higher for
the forward using an average angle (the dashed
and light gray lines) for angles of incidence be-
tween 10° < ϕ < 35°. A possible explanation for
this curiosity is that a phase component arises in
the solution when using the average angle in the
forward models for large contrasts in the elastic
parameters. To remedy this, we use the magnitude
of the reflection coefficient’s real and complex part
as suggested by Lay and Wallace (1995).
In general, the most erroneous of the two ap-

proximations is the Buland and Omre forward
model when using the incidence angle (the dotted
line). However, because the Buland and Omre for-
ward allows a linear relationship between AVO
seismic data and the elastic model parameters
(equation 8), consequently allowing a Bayesian

linearized AVO inversion; we will be using this forward model in
the following calculations.
The results also indicate that using the average angle, instead of

the incidence angle, reduces the modeling error substantially, as
suggested by Downton and Ursenbach (2006). But, as will be dis-
cussed later, the average angle is typically not known when per-
forming linearized AVO inversion because the elastic parameters
that are needed to compute the transmission angle are not known
prior to inversion. Further, if an elastic a priori model is assumed,
it is most often assumed to be smoothly varying, such that there
will be little difference between the angle of incidence and the aver-
age angle.

A Gaussian model of the forward-modeling error

Assuming that the modeling error is Gaussian, a Gaussian model
in the form of a mean and a covariance N ðdTapp;CTappÞ describing
the forward-modeling error θðdjmÞ ∼N ðdTapp;CTappÞ can be con-
structed from a large sample of modeling error realizations, as pro-
posed by Hansen et al. (2014) (see Appendix A). The estimated
covariance matrix CTapp of the modeling error using the Buland
and Omre forward approximation is depicted in Figure 4 for the
two prior models. Both covariance matrices show a heavily banded

Figure 3. Average standard deviation of the modeling error applying the Aki and Ri-
chards approximation using the average angle (the light gray line), and the Buland and
Omre approximation using the average and the incidence angle (dashed and dotted line)
plotted against the incidence angle. The lines represent the average of 1000 realizations
of the modeling error. Also plotted is the forward response from 1000 subsurface real-
izations using the Zoeppritz equations (the black line) as the signal. Results are shown
for (a) the small-contrast model and (b) the large-contrast model.
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structure, which indicates a high degree of correlated modeling er-
ror. The bands are especially distinguishable at intervals of 100 data
points, indicating the correlation between the same time samples at
different incidence angles. The covariance matrix also shows that
adjacent time samples are correlated within these bands. The am-
plitude of the modeling error increases along the diagonal, i.e., with
an increasing angle of incidence, as is also shown in Figure 3.
In addition to the estimated Gaussian model N ðdTapp;CTappÞ, we

also examine a Gaussian model that contains only the uncorrelated part
of the estimated covariance matrix. This is done to assess the impor-
tance of the apparent correlation of the modeling error and to evaluate
the common practice, as mentioned earlier, of describing the overall
data uncertainty with an uncorrelated Gaussian model with a known
variance. The full estimated Guassian model (using equations A-3 and
A-4) containing the correlated and uncorrelated parts will henceforth
be known as CTapp1, and the model containing only the uncorrelated
part will be known as CTapp2. However, the question now remains: Is
the Gaussian model assumption for the modeling error reasonable?
This is investigated further in the following by assessing the Gaussian
assumption qualitatively and quantitatively.

Qualitative assessment — Visual comparison

A qualitative assessment of the validity of the Gaussian model
assumption θðdjmÞ ∼N ðdTapp;CTappÞ is obtained by visually com-
paring realizations of the observed (actual) modeling error (obtained
using equation 10), with realizations of the Gaussian model describ-
ing the modeling error, which should show similar characteristics.
Three realizations from CTapp1 and CTapp2 are simulated and plotted
in Figure 5 alongside the observed modeling error. Realizations are
shown for the small-contrast and large-contrast prior model.
Realizations from CTapp1 generally show the same characteristics

as the observed modeling error for both prior cases. Visually, it
seems that the amplitudes and patterns are alike for corresponding

incidence angles of the observed and simulated realizations. The
main variability of the modeling error seems to be imitated and
it is very hard, if not impossible, to distinguish between the ob-
served modeling error and the realizations of CTapp1. This suggests
qualitatively that the choice of a Gaussian model to represent the
modeling error is valid. On the contrary, the realizations from
CTapp2 are not able to reproduce the pattern of the observed model-
ing error for either prior model. The amplitudes are similar to the
observed modeling error, but the white noise is a poor imitation of
the overall characteristics.
In summary, a qualitative assessment of the modeling errors

through visual comparison shows that the distribution and frequency
content of the observed modeling error is fairly well-represented by
the estimated N ðdTapp1;CTapp1Þ. A quantitative assessment revealed
that the correlated Gaussian model cannot completely describe the
observed modeling error, but that it is a much better representation
than a simple uncorrelated Gaussian model (see Appendix B). The
tails of the observed modeling error de;obs in the 1D marginal distri-
bution could potentially be fitted better with a distribution capable of
producing outliers more regularly (Cauchy distribution, Voigt profile,
etc.). Whether the Gaussian description of the modeling error is
“good enough” will ultimately be determined by what it will be used
for, as, for example, solving the inverse AVO problem.

FORWARD-MODELING ERROR IN BAYESIAN
LINEARIZED AVO INVERSION

The linear relation in equation 8 allows formulating a linear
inverse problem, in which the elastic parameters are estimated di-
rectly from AVO data. Buland and Omre (2003) solve this inverse
problem in a probabilistic framework following Tarantola and Val-
ette (1982a). Here, the noise on the AVO data is assumed to follow a
Gaussian distribution with a mean of zero and a covariance matrix
of CD (ε ∼N ð0;CDÞ). The prior information on the logarithm of

Figure 4. Estimated covariance matricesCTapp of the forward-modeling error for both prior models. The covariances are estimated from a large
sample (1000 realizations) of the modeling error. The same color scaling is used for both plots. The covariances show a banded structure,
indicating that the estimated modeling error is correlated.
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the elastic parameters is assumed to follow a Gaussian distribution
with mean vector μM and covariance matrixCM (m ∼N ðμM;CMÞ),
identical to the small-contrast statistical model presented earlier.
The posterior probability density of the model parameters ~m is de-
scribed as a Gaussian probability distributionN ð ~m; ~CMÞwith mean

~m ¼ μM þ ðWADCMÞ⊤C−1
D ðdobs −WADμMÞ (11)

and covariance

~CM ¼ CM − ðWADCMÞ⊤C−1
D WADCM; (12)

where dobs is the observed data.
The least-squares solution described in equations 11 and 12 al-

lows taking the modeling errors into account quite easily, as long as
the modeling error can be described by a Gaussian probability den-
sity (Mosegaard and Tarantola, 2002; Tarantola, 2005). In that case,
the mean (here zero) and covariance describing the measurement
and modeling error combine through addition of the mean and
covariances as

Figure 5. Observed modeling error (left column) plotted against three realizations from a Gaussian random field described by the estimated
covariance matrices CTapp1 and CTapp2. The scaling is the same for all realizations.
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CD ¼ Cd þ CTapp; (13)

where Cd is the covariance matrix describing the measurement
errors. In our case, we let the measurement error be represented
by uncorrelated noise; i.e., Cd is the variance along the diagonal.
As demonstrated previously, the linear Buland and Omre forward
model is improved using the average angle as opposed to the inci-
dence angle because the forward model is implicitly based on the
average angle. AVO angle stacks can, in principle, be processed to
reflect the average and incidence angles. But, as the offset-to-angle
conversion is based on a typically smooth velocity field (in the
present case, a constant field), a typical AVO angle gather will
represent an approximation to either the actual incidence or the
average angle. Therefore, we will in the remainder of the paper in
reference to the linearized inverse problem, refer to an reflection
angle. Through a numerical example, the effect of accounting for
and discarding the modeling error will now be considered.

Bayesian linearized AVO inversion — Numerical
example

The prior realizations in Figure 2 are used as two reference mod-
els mref . A set of synthetic data is calculated using the Zoeppritz
equations for 11 reflection angles (identical to Figure 1). Uncorre-
lated noise ε ∼N ð0;CDÞ with S∕N ¼ 5 between the standard
deviation of the forward response and the standard deviation of the
noise is added to the data to obtain the “observed” data dobs.
The small-contrast model presents an ideal case for linearized

AVO inversion because the variations in the elastic parameters
are smooth (Gaussian), and it is known to be a realization of a
Gaussian probability density with known mean and covariance,
N ðμM;CMÞ. The a priori model is thus known. Because the exact
noise model is also known, N ð0;CDÞ, the only unknown factor in
the linearized AVO inversion method for the smooth prior is the
effect of the modeling error.
The large-contrast model cannot be described fully by a Guassian

model, which prohibits assessing the effect of the forward-modeling
error in the linearized inversion directly. However, for comparison,
a Gaussian prior model has been inferred that best matches the
reference model using traditional semivariogram analysis. An expo-
nential type of Gaussian distribution with 0.5 correlation coefficient
between the elastic parameters and a range of 12 ms was found. The
estimated variances for the elastic parameters are σ2vP ¼ 0.01,
σ2vS ¼ 0.05, and σ2ρ ¼ 0.002, respectively. In a real-world setting,
a Gaussian model may also not be the obvious choice to describe
the prior model, but the Gaussian prior model assumption is needed
to make use of equations 11 and 12. Recently, Grana et al. (2017)
propose a method that allows using Gaussian prior models with a
non-Gaussian 1D marginal distribution. Sabeti et al. (2017) perform
direct sequential simulation to allow using non-Gaussian 1D distri-
butions. These methods may allow a better prior model describing
models, such as the large-contrast model.

SMALL-CONTRAST MODEL

Figure 6 displays the results from the Bayesian linearized AVO
inversion on dobs from the small-contrast realization. Initially (the
top figure), the modeling error is disregarded during inversion, i.e.,
CD ¼ Cd in equations 11 and 12. This result in some features that
seem to be well-resolved but that lie well beyond the 95% confi-

dence interval and represent modeling errors being fitted as data.
This bias happens especially where the contrasts in model param-
eters are fairly high, for instance, at approximately 2150–2220 ms.
The poorest performance is the posterior distribution of the

density ρ, where serious bias effects are recognized for large parts
of the posterior mean prediction compared with the reference
model. This is a worrisome example of an apparently well-resolved
feature, which is actually noise (modeling error) being fitted as data.
Because the modeling error is increasing for far reflection angles,
which are important for the density estimate, this could explain this
bias. The P-wave velocity vP and the velocity ratio vP∕vS are a bit
better resolved, however still showing the noise being fitted as well-
resolved features. The acoustic impedance and S-wave velocity are
relatively well-resolved, but the reference model is still not fully
captured by the uncertainty bands (confidence intervals). In fact,
if the 95% confidence intervals were to be an accurate depiction
of the uncertainty, one would expect the reference model to be con-
tained within these uncertainty bands at approximately 95% of the
samples, which is not the case. This makes the reference model a
highly improbable realization of the posterior distribution obtained.
Thus, if not accounted for, the modeling error related to the use of
the linear Buland and Omre forward is able to create significant
biases in inversion results for S∕N ¼ 5. The lower plots in Figure 6
show the corresponding inversion results accounting for the mod-
eling error using equation 13 and the inferred covariance matrix
CTapp1 shown in Figure 4. The reference model generally lies within
the 95% confidence interval. No artifacts are visibly present in the
inversion results, and the modeling error seems to be properly ac-
counted for. This is true even at approximately 2160–2180 ms,
where the previous nonaccounting posterior prediction failed to re-
solve the reference model.
By calculating the root-mean-square deviation (rmsd) between

the predicted values and the reference model, we can quantify
how well each inversion scheme is predicting the reference model:

rmsd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
i¼1ðmi − ~miÞ2

n

r
; (14)

wherem is the known reference values, ~m is the posterior prediction
(mean), and n is the number of elements. Because the realization
mref comes from a Gaussian distribution and the noise distribution
is Gaussian, we can also quantify how likely mref is as a realization
from the posterior distribution N ð ~m; ~CMÞ by

fðmref jN ð ~m; ~CMÞÞ∼ expð−0.5ðmref − ~mÞ⊤ ~C−1
M ðmref − ~mÞÞ:

(15)

Given a large sample of mref , logðfÞ should follow a Gaussian
distribution N ð−Nm∕2;

ffiffiffiffiffiffiffiffiffiffiffiffi
Nm∕2

p Þ if the degrees of freedom of the
model parameters are sufficiently high (Hansen et al., 2016). In our
case, the expected distribution is N ð−150; ffiffiffiffiffiffiffiffi

150
p Þ because

Nm ¼ 300. In other words, the logðfÞ value should be in the interval
of −150� 25 to be a likely realization from the posterior distribu-
tion N ð ~m; ~CMÞ.
The quantitative measures are summarized in Table 1. The rmsd

values and the logðfÞ value underline the visual results from
Figure 6. By including the modeling error in the inversion, rmsd
is reduced as much as 40%–50%. The largest improvement is seen
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in the density prediction, which comply with the visual results that
the poorest prediction of mref is offered for the density. Further-
more, the logðfÞ value for the case of CD ¼ Cd reveals that mref

is an very unlikely realization of the posterior distribution
N ð ~m; ~CMÞ. In other words, the posterior uncertainty does not
capture the reference model. By accounting for the modeling error,
mref can become a highly likely realization from that posterior

distribution, as shown by the logðfÞ close to −150. By calculating
the logðfÞ value for multiple realizations of mref , it is determined
that the result is not dependent on the specific realization used in
this inversion (see Appendix C). In summary, the inclusion of the
estimated modeling error in the linearized AVO inversion for the
smooth prior does offer better predictions and a realistic uncertainty
band.

Figure 6. Linear Bayesian inversion performed on reference data calculated from the small-contrast reference modelmref presented in Figure 2
(red line) with and without accounting for forward modeling errors. Posterior density (black = high density, white = low density), mean
(yellow), and 95% confidence interval (dashed blue line) is shown. Before the inversion, the reference data were added random uncorrelated
white noise with a standard deviation five times less than the standard deviation of the Zoeppritz forward response of the reference model; i.e.,
the S∕N ¼ 5.
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LARGE-CONTRAST MODEL

Figure 7 displays the results from the Bayesian linearized AVO
inversion on dobs from the large-contrast realization and the esti-
mated prior distribution described earlier. For the case of neglecting
the forward-modeling error (top figure), i.e., CD ¼ Cd, the refer-
ence model mref is extremely poorly resolved. The reference model
is rarely, if ever, within the 95% confidence interval. This happens
despite the posterior distribution having a much lower resolution
(higher uncertainty) than for the small-contrast prior inversion in
Figure 6.

At certain depths, the predicted value is in fact opposite of the
reference model. The predictions are for example consistently
higher than the reference value for all elastic parameters at approx-
imately 2150 ms. The high-prediction anomaly, which indicates a
potential zone of interest, turns out to be an artifact from the inver-
sion. The rmsd values in Table 2 show that predicted values are very
far from the reference model for all elastic parameters, especially
the S-wave velocity. The mismatch between the predicted values
and the reference value is partly expected due to the use of the
smooth Gaussian prior model to describe the abrupt changes in elas-
tic properties of the subsurface realization. However, when compar-
ing these results with the case of accounting for the modeling error
CD ¼ Cd þ CTapp1 (bottom figure), the wrong prior distribution
can only explain a certain amount of the misfit. Accounting for
the modeling error does, as for the small-contrast case, significantly
improve the visual results and the rmsd values. Many of the major
trends do seem to be captured by the posterior model, and the un-
certainty bands often contain the reference model. Surprisingly, ac-
counting for the modeling error even catches some of the major
peaks in the vP∕vS ratio. The logðfÞ values are unsurprisingly
low for both inversion cases as seen in Table 2 because we are fitting
a discrete reference model with a smooth model. However, the large
drop in logðfÞ when accounting for the modeling error further em-
phasizes the above-mentioned points.

DISCUSSION

Many types of inversion of AVO data has been proposed (Sim-
mons and Backus, 1996; Buland and Omre, 2003; Vecken and Da
Silva, 2004; Downton, 2005; Rabben et al., 2008; Wilson, 2010;
Alemie and Sacchi, 2011; Aune et al., 2013; Grana, 2016). Usually,
the data uncertainty is assumed to be Gaussian with zero mean and

a known variance (Rabben et al., 2008; Singleton, 2009; Alemie
and Sacchi, 2011; Aune et al., 2013; Grana, 2016). Sometimes,
the modeling errors due to the choice of forward model are also
considered as part of the general data uncertainty (e.g., Downton,
2005).
It has been proposed to account for systematic errors in Bayesian

inversion related to “theory errors” (Riedel et al., 2003; Chen et al.,
2007). This is achieved by adding a correlated covariance model
describing the modeling uncertainty to the general uncorrelated
data uncertainty. This covariance model is obtained using a fixed
maximum likelihood estimate (Gerstoft and Mecklenbräuker,
1998). The shape of the correlated covariance modeling errors is
in this case assumed to be proportional to the apparent covariance
of the data. Alternatively, the data uncertainty including modeling
errors has been added as an unknown parameter in a Bayesian in-
version framework (Dosso and Holland, 2006).
The presented method of quantifying the forward-modeling

error presents a straightforward workflow. In a Bayesian frame-
work, a choice of prior must be performed in all circumstances.
A sufficiently large sample of prior realizations and the subsequent
modeling error can then be simulated to infer a Gaussian model
describing the error. This Gaussian model can be added to the ob-
servational uncertainties, and the modeling errors are accounted for
as long as the likelihood is Gaussian. Although the investigated er-
rors are not strictly Gaussian, the inversion results indicate that the
method offers a significant improvement compared with neglecting
the error.
The key benefit of the proposed method is therefore that it allows

a correct quantification of uncertainty while avoiding over-fitting
the data, i.e., avoiding fitting noise. In addition, the proposed meth-
od avoids making any assumptions about the shape of the modeling
error, other than it needs to be described by a Gaussian model. In
comparison with the previously considered approaches by Riedel
et al. (2003) and Chen et al. (2007), this method of quantifying
the modeling error is independent of data. The quantification of the
modeling error and thus the total data uncertainty can also be de-
scribed prior to inversion as opposed to inverting for the magnitude
of a correlated Gaussian model from data, as proposed by Dosso
and Holland (2006).

Handling significant forward-modeling errors for large
reflection angle in Bayesian linearized inversion

The results indicate that the forward-modeling error of applying
the Buland and Omre forward is significant for larger reflection an-
gle, especially if the prior model has a large contrast in the elastic
parameters. This is not surprising because the Buland and Omre
forward model depends on a small contrast approximation. The
modeling error posses a real concern for reflection angle ϕ > 20°
if a non-Gaussian prior model is used. For the better case of a Gaus-
sian prior model, our results are in agreement with earlier results
suggesting the modeling error is negligible for data sets with ϕ <
30° (e.g., Shuey, 1985; Buland and Omre, 2003). Modern collection
of seismic data allow processed AVO data to have a reflection angle
well exceeding 30°. It is not uncommon that inversion is performed
for data sets containing reflection angle of up to 50° (e.g., Barclay
et al., 2008).
In practice, when dealing with AVO data with a large reflection

angle, (at least) three possible approaches exist.

Table 1. Small-contrast prior inversion. The rmsd calculated
using equation 14 for the three elastic parameters vP, vS, and
ρ divided by the average value to obtain the relative
parameters vP∕vP, vS∕vS, ρ∕ρ, and the log�f � value calculated
using equation 15. The values are calculated for both
inversion cases (CD � Cd and CD � Cd � CTapp1) shown in
Figure 6.

rmsd rmsd rmsd

CD vP∕vP vS∕vS ρ∕ρ̄ logðfÞ
Cd 0.0756 0.0760 0.0775 −1428.7
Cd þ CTapp1 0.0444 0.0573 0.0377 −151.3
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Solution 1: Neglect modeling error

One can neglect the possible modeling error of applying an im-
perfect forward and perform the inversion nonetheless. However, as
shown, this strategy leads to significant biases in the posterior dis-
tribution compared with the true model. Most concerning is that
apparently well-resolved posterior features can in fact, as demon-
strated, be due to fitting modeling noise as though it was data. This

can have a fatal effect on subsequent decision making. When ran-
dom noise on the data is sufficiently large (small S/N), the theoreti-
cal errors drown in the random noise and the posterior distribution
will not be biased significantly from the modeling error. Depending
on the subsurface variability, the results in Appendix C suggest that
a maximum of S∕N ¼ 0.5 is used, even for a smooth prior model
when the Buland and Omre forward is used in Bayesian linearized
AVO inversion for the considered model and configuration.

Figure 7. Linear Bayesian inversion performed on reference data calculated from the large-contrast reference modelmref presented in Figure 2
(red line) with and without accounting for forward modeling errors. Posterior density (black = high density, white = low density), mean
(yellow), and 95% confidence interval (dashed blue line) is shown. Before the inversion, the reference data were added random uncorrelated
white noise with a standard deviation five times less than the standard deviation of the Zoeppritz forward response of the reference model; i.e.,
the S∕N ¼ 5.
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Solution 2: Remove larger reflection angle

To avoid introducing significant forward-modeling errors, data
from larger reflection angle are neglected (Stolt and Weglein,
1985). Two major issues arise using this strategy. First, seismic data,
which are extremely difficult and expensive to acquire, are thrown
away. Second, small reflection angles are mostly sensitive to changes
in acoustic impedances, whereas larger reflection angles are poten-
tially sensitive to changes in the S- and P-wave velocities (Shuey,
1985). By throwing away the wide reflection angle, significant infor-
mation about the vS and vP∕vS ratio is lost.

Solution 3: Quantify and account for modeling error

Because the effect of the modeling error is significant for S∕N >
0.5, good data with low noise are therefore explicitly an issue; i.e.,
the better the data, the bigger the biases in the posterior results. It
should once again be stressed that these biases occur even in a best-
case scenario with a small-contrast smooth prior. Because the mag-
nitude of the modeling error is higher for the large-contrast prior,
one can expect results with even more significant bias. By inferring
a Gaussian model directly from a sample of the modeling error as
demonstrated here, it has been shown that S/N less than 20 produce
reasonable results. If the correlated part is ignored, a S∕N < 2 has
been shown to produce reasonable results (Appendix C). However,
because the modeling error is correlated to a large degree, it is rather
“naive” to only consider it to be uncorrelated. Our results suggest
that the correlated part of the modeling contains significant infor-
mation, which improves the inversion result.

Future work

In this paper, the focus has been on the modeling error related to
the use of a linear approximation of Zoeppritz equations, especially
the Buland and Omre forward. This is, as mentioned earlier, just one
out of many potential uncertainties regarding AVO data. In the pre-
sented Bayesian linear inversion scheme, this modeling error is
implicit in the scheme and hence unavoidable. It therefore repre-
sents a minimum level of modeling error, which is often neglected.
The modeling error associated to for example ignoring anisotropy,
imperfect NMO correction, or the use of uncertain wavelets (but to
name a few significant sources of modeling errors) may very well be
larger than the modeling error associated with the use of a linear
small-contrast approximation to Zoeppritz equations, as argued
by, e.g., Downton (2005). However, the examples demonstrated that
modeling errors of these types can only be ignored when the S/N is

less than 0.5, which is rarely the case in practice of marine seis-
mic data.
The presented methodology can be extended to investigate, quan-

tify, and possibly account for the effect of some of the other AVO
modeling errors. Therefore, the next logical step would be to inves-
tigate and quantify the effect of the aforementioned sources of AVO
modeling error. In particular, the modeling error associated with us-
ing the convolutional model as supposed to a NMO-corrected shot
gather from waveform simulated seismics. The main requirement is
that one must be able to provide a statistical description of the
source of the modeling error, from which realizations of the mod-
eling error can be computed. In the present case, the modeling error
was linked to the subsurface variability. Further, the methodology
can be used to quantify and account for modeling errors also in a
full nonlinear, non-Gaussian inversion performed using, e.g., the
extended metropolis sampler (see, e.g., Zunino et al., 2015).
A probabilistic Monte Carlo-based sampling strategy would for

instance be able to sample the joint posterior distribution for the
case of making use of the large-contrast prior (Mosegaard and
Tarantola, 1995).

CONCLUSION

We have simulated and quantified the modeling error related to
using a linear approximate solution to Zoeppritz equations. The
modeling error depends on the degree of subsurface variability
and increases with angle of incidence. The Aki and Richards for-
ward is shown to be less inaccurate than the Buland and Omre
small-contrast forward, especially using the average angle as op-
posed to the incidence angle.
A Gaussian model describing this modeling error is inferred from

an obtained sample of the modeling error. Realizations from this
distribution resemble and mimic the observed values of the model-
ing error to a degree, where visual discrimination is difficult. A
quantitative analysis reveals that the Gaussian model, while not per-
fect, provides a good description of the generated sample of the
modeling error.
A Gaussian model of the modeling error is trivially accounted for

as part of linearized AVO inversion. It has been shown that even
small modeling errors from a linear forward model, related to a
smooth Gaussian prior, can contribute to significant biases in inver-
sion results. Apparently, well-resolved features in the posterior dis-
tributions may be caused by fitting modeling errors. In the case
there is little subsurface variability expected (assuming a very
smooth Gaussian-type a priori covariance model), our results indi-
cate that the modeling error can be disregarded for the considered
setup when the S/N of the AVO data is equal to or less than 0.5.
Accounting for the modeling error, through the use of the inferred
Gaussian model of modeling errors, improves the inversion results
dramatically.
If more subsurface variability is expected, the effect of the mod-

eling errors in inversion is even more severe. Our results indicate
that accounting for the modeling error in this case provides a more
reasonable prediction of the subsurface properties. Furthermore, it
limits the amount of major artifacts in the inversion.
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APPENDIX A

ESTIMATING MODELING ERROR WITH A
GAUSSIAN MODEL

Consider a sample consisting of N realizations of the modeling
error (d1e; d2e; : : : ; dNe ). This sample is set up in matrix form as

De ¼ ½d1e; d2e; : : : ; dNe �: (A-1)

The mean-modeling error is estimated for each individual point j as

djTapp
¼ 1

N

XN
i¼1

Di;j
e ; (A-2)

where the mean for the jth data point is the arithmetic mean of all
i ¼ 1; : : : ; N realizations from the sample. The mean vector for all
data points is then achieved by combining the mean of the individ-
ual data points calculated in equation A-2:

dTapp ¼ ½d1Tapp
; d2Tapp

; : : : ; dNd
Tapp

�: (A-3)

The covariance of the modeling error is estimated
as

CTapp ¼
1

N
½De − DTapp�½De − DTapp�⊤;

(A-4)

where DTapp
¼ ½d⊤Tapp

; d⊤Tapp
; : : : ; d⊤Tapp

� is a matrix
containing N repetitions of the mean vector of
equation A-3. The mean dTapp does in practice
tend toward zero for large N as the modeling
error is either negative or positive depending on
the elastic parameters, which have a fixed mean.
The DTapp can therefore be excluded from equa-
tion A-4 for large N.

APPENDIX B

QUANTITATIVE ASSESSMENT
OF GAUSSIAN MODEL

A quantitative measure of the validity of the
Gaussian assumption on the modeling error can
be obtained by analyzing how probable the simu-
lated modeling errors are as a realization of the
inferred Gaussian model. The definition of the
Gaussian model on a modeling error realization
de is

fðdejN ðdTapp;CTappÞÞ
∼ expð−0.5ðde − dTappÞ⊤C−1

Tappðde − dTappÞÞ; (B-1)

¼ expð−0.5 ΩÞ; (B-2)

where Ω ¼ ðde − dTappÞ⊤C−1
Tappðde − dTappÞ will then be distributed

according to a χ2-distribution with Nd number of degrees of
freedom, which for large Nd tend to follow a Gaussian distribution
Ω ∼N ðNd; 2NdÞ (Tarantola, 2005). This also means that
logðfðdejN ðdTapp;CTappÞÞÞ ¼ −0.5Ω, for large Nd, will tend to
follow a Gaussian distribution N ð−Nd∕2;

ffiffiffiffiffiffiffiffiffiffiffi
Nd∕2

p Þ (Hansen
et al., 2016). Specifically, in our example, logðfÞ should follow
the Gaussian distribution N ð−550; ffiffiffiffiffiffiffiffi

550
p Þ because Nd ¼ 1100.

Figure B-1 shows the histograms of logðfðdejN ðdTapp1;
CTapp1ÞÞÞ for actual simulated modeling errors (de;obs), realizations
of N ðdTapp1;CTapp1Þ (de;app1) and samples of N ðdTapp2;CTapp2Þ
(de;app2). The histogram of log(fðde;app1Þ) values (dark gray) fol-
lows the Gaussian distribution as described above, with a mean ap-
proximately −550. This is expected as we are comparing
realizations from CTapp1 with itself.
If the observed modeling error is described perfectly by the esti-

mated Gaussian covariance model, the sample of the observed mod-
eling error (black) would plot on top of the CTapp1 sample (dark gray)

Figure B-1. Log-likelihood values calculated for 1000 realizations of the observed
modeling error (black) and the two samples of CTapp1 (dark gray), CTapp2 (light gray),
respectively. The results are shown for the two types of prior models, (top row) the
small-contrast prior distribution and (base row) the large-contrast prior distribution.
Notice the logarithmic scale used on the left side plots.
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in Figure B-1. The histogram of the observed modeling error for the
small-contrast prior is left-skewed with values mostly lying at approx-
imately −60 with a tail in the range between −200 and −500. In the
large-contrast case, a tail is not present, but the distribution is other-
wise similar, with values of approximately −120. Such consistently
higher log-likelihood values suggest that the sample values are con-
sistently closer to the mean (zero) value than is expected from a nor-
mal distribution. For comparison, the log-likelihood histograms of
realizations from the uncorrelated Gaussian model CTapp2 (light gray)
show values exceeding the previous two with several orders of mag-
nitude. Therefore, the uncorrelated Gaussian model CTapp2 is not a
very good description of the actual noise sample, whereas the corre-
lated Gaussian CTapp1 while not perfect, does a much better job.

Figure B-2 shows the 1D marginal distribution of the observed
modeling error de;obs (dashed black) compared with the estimated
models below (Figure B-2a and B-2d) and greater than ϕ ¼ 30°
(Figure B-2b and B-2e) for the two subsurface models. The distri-
bution of de;app1 (dark gray) and de;app2 (dotted light gray) shows
identical distributions on both histograms because they are both
from a Gaussian model with a similar variance. Most noticeable
for the larger angles of incidence and for the large-contrast prior
distribution in general, Figure B-2b, B-2d, and B-2e demonstrates
that the observed modeling error produce a slimmer 1D distribution,
with longer tails that cannot be completely described by the Gaus-
sian model. This slight discrepancy to the Gaussian model explains
the discrepancy observed in Figure B-1.

Figure B-2. (a, b, d, and e) Histogram of modeling error and (c and f) power spectrum shown for three samples consisting of 1000 realizations
of the observed modeling errors de;obs (dashed black), de;app1 (dark gray), and de;app2 (light dots), respectively. The histograms and power
spectrum are shown for (a-c) the small-contrast prior distribution and (d-f) the large-contrast prior distribution. The histograms of the modeling
error are split between angles of incidence above and below ϕ ¼ 30°. The final column shows a normalized frequency spectrum of all angle of
incidence traces.
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In addition, a power spectral density (power spectrum) is calculated
using a fast Fourier transformation on the three samples. The normal-
ized power spectrum for the average of all incidence angles is shown
in Figure B-2c and B-2f. Realizations from the estimated Gaussian
model de;app1 show a similar frequency pattern to the observed mod-
eling error de;obs, in which frequencies at approximately 30 Hz con-
tain the most power. On the contrary, all frequencies, as expected, are
equally represented for the sample of the uncorrelated Gaussian
model de;app2. This result underpins the qualitative result from Fig-
ure 5, where visual discrimination between the observed modeling
error and realizations from CTapp1 is difficult, if not impossible.

APPENDIX C

MULTIPLE INVERSION RESULTS

To determine whether the bias found in Figure 6 was an isolated
or a more general problem, we repeat the inversion 1000 times, us-
ing 1000 different realizations of the small-contrast prior as refer-
ence models. The Zoeppritz forward response for each realization is
calculated and noise is added, as described previously, to obtain
1000 observed reference AVO data sets.
If the estimated posterior Gaussian probability density adequately

describes the solution to the inverse problem, then each of the 1000
reference models should be realistic realizations of
the corresponding posterior Gaussian probability.
This is quantified using equation 15 for each
realization and the corresponding posterior distri-
bution.
Figure C-1 shows histograms of the distribu-

tion of logðfÞ for pairs of 1000 reference models,
and their corresponding Gaussian posterior dis-
tributions. Three different noise models (CD)
are used for inverting the data. In the first case
(left column), the noise model is equal to the ob-
servational uncertainty CD ¼ Cd (i.e., modeling
errors are ignored). For S∕N ¼ 5, the histogram
is not following the expected Gaussian distribu-
tion (black line) and the logðfÞ tend to have
much lower values. These outliers correspond to
reference models that are inconsistent with the
posterior distribution. Only a few prior realiza-
tions are found within the expected distribution.
This confirms the result of heavy biases from the
single prior realization in Figure 6. To avoid
biases completely, the results from the likelihood
histograms indicate that only S∕N ¼ 1 or less
should be used if only the uncorrelated observa-
tional uncertainty is used as data uncertainty.
In the second case (the middle column), the

data uncertainty consists of the observational
uncertainty and the inferred Gaussian model
for the modeling error CD ¼ Cd þ CTapp1. For
S∕N ¼ 5, the histogram is shifted to more or less
fit inside the expected distribution. By account-
ing for the modeling error, the bias in results has
more or less vanished. This confirms the visual
results from Figure 6. The distribution of logðfÞ
in Figure C-1 suggests that by accounting for the
modeling error, it is possible to drastically im-

prove inversion results in terms of the CD ¼ Cd þ CTapp1 being
an accurate quantification of the uncertainty. Even for S∕N ¼ 20,
the inversion results indicate that the proposed data uncertainty is a
relatively accurate description of the uncertainty.
Finally, the inversion is also performed with data uncertainty

CD ¼ Cd þ CTapp2, i.e., the assumption of uncorrelated modeling
errors. The resulting histograms (the right column) show a similar
distribution as for using CD ¼ Cd. In contrast to the first case, the
distribution of logðfÞ generally attains higher values forCD ¼ Cdþ
CTapp2. In practice, this means that adding the uncorrelated Gaus-
sian model, the inversion will provide a posterior distribution incon-
sistent with the reference model, though not to the same extent as
for the observational uncertainties only. To avoid biases in the in-
version results, it is here indicated that an S∕N ¼ 2 should not be
exceeded. BecauseCTapp2 is basically just white noise with differing
variance, adding this to data uncertainty is somewhat comparable
with just increasing the magnitude of the observational uncertain-
ties. Therefore, the resolution (variance of the posterior) of CD ¼
Cd þ CTapp2 is also lower than for the case of CD ¼ Cd. This could
explain why the results are generally better because the lowered
resolution allows for reference models to be a realistic realization
from the inversion result.
At S∕N ¼ 0.5, the observational data noise is large enough such

that the distribution of logðfÞ is similar for all three uncertainty

Figure C-1. Histograms of log-likelihood values according to equation 15 for a sample
of 1000 prior realizations at different S/N levels. The linear Bayesian AVO inversion
has been performed for three data uncertainty models CD ¼ Cd, CD ¼ Cd þ CTapp1,
and CD ¼ Cd þ CTapp2.
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models. The effect of the modeling error is therefore insignificant for
S∕N <¼ 0.5. This refers to unrealistic amounts of noise on the data
and thus to where the resolution of the posterior models is poor. In
other words, this demonstrates that the modeling error related to us-
ing the linearized Buland and Omre forward for reflection angle up to
50° can only be safely ignored if the S/N is extremely low.
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Introduction 

Seismic data is an important source of information about geometry and properties of the subsurface. 

Rarely, if ever, are the raw seismic shot gathers used directly. Instead, some processing techniques are 

applied to transform the data into something useful for the specific seismic discipline (seismic 

interpretation, Amplitude Versus Offset (AVO) analysis, inversion, etc.). Seismic raw data are for 

instance typically stacked to reduce noise. Other processing techniques include; migration; gain 

correction; Normal Move-Out (NMO) correction; deconvolution; filtering; etc. In the following we 

focus on the processing of raw seismic data into Amplitude Versus Angle (AVA) seismic data for 

inversion of elastic parameters in the subsurface. An important, and perhaps the most important reason 

for processing raw seismic data into AVA/AVO data is that it allows the use of the popular 

convolutional model, were a seismic trace can be represented as a convolution between a reflectivity 

series and a wavelet (Yilmaz, 2001). Any successful processing of raw data would try to minimize the 

effect of features not explained by the convolutional model. Such features would in effect be 

noise/processing errors. We hereby refer to this the ‘modeling error’ from processing. For instance is 

the mapping from offset to angle prone to a large degree of uncertainty depending on conversion method 

(Mukhopadhyay and Mallick, 2011). In this extended abstract, we investigate the modeling error arising 

from processing raw seismic shot gathers to AVA gather in an ideal case with a known synthetic 

velocity model of the subsurface. Using the methodology presented in (Madsen and Hansen, 2018) the 

modeling error is quantified, estimated and used to account for processing errors in Bayesian linear 

inversion of seismic AVA data. 

 

Method 

To generate one realization of the modeling error we need two methods (forward models) of obtaining 

AVA data from an elastic log m. For the present case, we have the processing sequence from raw 

seismic shot gathers to AVA data g"#$% and an approximate forward model consisting of a linearization 

of Zoeppritz equations plus a convolution with a wavelet g%$&'. We have chosen the forward model 

g%$&' =)G similar to that presented in (Buland and Omre, 2003) as it allows a linear forward for 

subsequent linearized Bayesian inversion. The difference between these two results will be a realization 

of the modeling error *+##$#: 
 

 *+##$# = *"#$% − *%$&' = ) g"#$% - − g%$&' - = g"#$% - − .-  (1) 

 

In order to generate a raw seismic shot gather from m, a finite difference solver is used to do full 

waveform modeling. The solver is staggered grid fourth order space, second order time accuracy based 

on (Levander, 1988). Absorbing PML boundaries (Collino and Tsogka, 2001) are used for all 

boundaries, so a free surface is not considered. The reason for this is that a free surface boundary 

introduces significantly more modeling error (multiples, surface waves, etc.). Thus, what we present 

here will be an ideal case representing a lower limit of modeling errors (In practice modeling errors will 

be higher). The subsequent processing steps, and effect here of, can then be minimized. Furthermore, 

does the use of synthetic logs provide a known synthetic velocity model of the subsurface, which enable 

ideal conditions for processing. Finally, the wavelet can be extracted relatively exactly from the finite 

difference solver. The processing is done in Promax following the sequence described in table 1:  

 

Processing sequence in Promax 
Load raw 

seismic data 

Spherical divergence 

(constant velocity 

plus 6 dB/sec) 

NMO-correction (with known 

background velocity model) 

FK-filtering 

(apparent 

velocity = 

1500 m/s) 

Offset to angle 

conversion 

Table 1 Processing sequence (left to right) of raw seismic data to AVA data in Promax 
 

Notice that the processing sequence does not contain any noise suppression, and hence stacking 

routines, since the raw seismic data are basically noise free. Moreover, does the PML strategy allow an 

efficient suppression of the sea-bottom multiple, which further reduces the need for processing. The 

FK-filtering is done in order to remove S-wave energy within the raw data for larger offsets. 
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Figure 1 a) Well log m of elastic parameters: vp (yellow), vs (red) and ! (blue). b) Finite difference raw 
data. c-e) dproc, dconv and derror respectively, plotted as wiggle plots using the same scaling. 
 

Figure 1 shows an example of how one realization of derror is calculated. First a log m is generated of 

the elastic parameters: P-wave velocity (vp); S-wave velocity (vs) and density (!). This is done 

combining a realization from the correlated Gaussian model described in (Buland and Omre, 2003) with 

a water column and a sediment layer down to around 0.5 ms which is depicted in Figure 1a. The log is 

slightly unrealistic in terms of the transition between sea-bottom and water/sediment. This has been 

done to avoid a large reflection from the sea-bottom and hence provide the best possible premise for 

subsequent processing. The raw seismic shot gather in Figure 1b is generated from m using the finite 

difference solver with absorbing boundary conditions. The effect of multiples is negligible as displayed 

in the resulting raw data. Figure 1c shows the AVA data dproc from processing the raw data from figure 

1b. The AVA data dconv using the linear model convolutional model is shown in Figure 1d, where the 

wavelet is estimated directly from the finite difference solution. Finally, the modeling error realization 

derror, i.e. the difference between the two data is calculated using Eqn. 1 and is shown in Figure 1e. By 

comparing the standard deviation of all traces in figure 1c and 1e, the signal-to-noise ratio (S/N) 

between dproc and derror is calculated to 1,82.  

 

 
Figure 2 a) Estimated covariance model for processing error: CT,app. b) Mean for estimated modeling 
error model: dT,app (blue) and variance (red). c) 1D marginal distribution of modeling error for observed 

and realizations from the estimated statistical model. 

 

A statistical Gaussian model / *0,2"", 30,2""  is estimated from a sample consisting of 1000 modeling 

error realizations using the methodology presented in (Hansen et al., 2014; Madsen and Hansen, 2018). 

For all 1000 realizations in the sample the average S/N ≈ 2 and the modeling error realization example 

in Figure 1 is a fair representation of the general level of modeling error. Figure 2a and 2b show the 

estimated covariance matrix 30,2"" and mean vector *0,2"" respectively. The estimated covariance 

show a strong correlated pattern of the modeling error between each of the angle traces. The modeling 

error variance is increasing with increasing reflection angle. The mean of the estimated modeling error 

is varying around zero. The 1D marginal distribution of the modeling error (Figure 2c) reveals that 

modeling errors of the estimated Gaussian model (orange) reasonably reflect the observed modeling 

errors (blue).  

 

Inversion example  

We invert a processed synthetic AVA dataset *$56 = 7"#$% -  using Bayesian linearized AVO 
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inversion equal to that presented in (Buland and Omre, 2003), where the posterior distribution - is 

described by a multivariate Gaussian distribution / 89, 39 . To assess the posterior distribution -, 

three quantifiable measures are introduced. The entropy, H, describing the unpredictability of the 

posterior multivariate normal distribution can be calculated as: 

 

H =
N9
2
+
N9
2
ln 2π +

1
2
ln(det 39 )  (2) 

 

Where N9 is the number of model parameters (length of -). The log-likelihood, logL, for the prediction 

89 in terms of the posterior / 89, 39  is calculated as: 

 

logL = −
1
2
(- − 89)I39JK(- − 89) 

 (3) 

 

As argued in e.g. (Madsen and Hansen, 2018) the logL value should for large numbers of model 

parameters tend toward a value of –N9/2. For the current inversion case the value should be 

approximately -241.5. If so, the posterior distribution will be representative of the reference model. 

Finally, we use the root-mean-squared deviation (rmsd) to determine the accuracy of the prediction 89 

compared with the true reference model -. The processed data is inverted using three different noise 

models 3L and is shown in Figure 3. Case 1, Estimated correlated noise: We let the noise be described 

by the estimated Gaussian model (3L = 30,2""). In this inversion, the posterior distribution (Figure 3a-

e) is representing the reference model (red line) and there are no apparent biases in the inversion result 

which is underlined by the low rmsd and logL value close to -241.5. Figure 3f shows the observed data 

(black) and the convoluted data (blue) for the given reference model. The posterior data response for 

ten posterior realizations (green) show that the data fit is poor with the observed data. Instead, the 

posterior realizations tend to follow the ideal convolution data response which is the forward model 

used for the inversion. I.e. the unwanted features from the processing are not fitted. Case 2, Low 
uncorrelated noise: An uncorrelated noise model is assumed, which is common inversion practice as it 

provides the highest entropy H for any Gaussian model. We set the level of uncorrelated noise with a 

S/N giving comparable results for the posterior entropy as for case 1. This corresponds to a S/N = 9. 

Here, some biases are apparent in the posterior distribution (Figure 3g-k). Figure 3l, show that the data 

misfit is very low as the posterior data (green) follows the observed data (black). This shows that 

unwanted processing features (noise) are fitted as data which results biases in the posterior. Case 3, 
High uncorrelated noise: Again, an uncorrelated Gaussian noise model is used, but now adjusted with 

increased noise level so the logL values is close to -241,5. This corresponds to a S/N = 0,4. Figure 3r 

shows that the increase in uncorrelated noise allow a larger misfit between the posterior data realizations 

and the observed data. This approach unfortunately lead to low posterior resolution (as seen in Figure 

3m-q), and a much higher entropy than the corresponding two cases. The results from all three inversion 

cases are summarized in table 2.  

 

 rmsd H (Eqn. 2) logL (Eqn. 3) 

Case 1: 3L = 30,2"" 0,0306 -1135,08 -243,67 

Case 2: 3L = 3M,K (S/N=9) 0,0734 -1155.39 -50760,27 

Case 3: 3L = 3M,N (S/N=0.5) 0,0582 -789.98 -248,72 

Table 2 Root-mean squared deviation of prediction 89, Entropy of 39 and log-likelihood 
 

Conclusions 

The inversion example suggests the need for reasonable handling of processing errors to avoid major 

biases and noise fitting in the inversion results as seen in Case 2. Case 3 demonstrate that in order to 

use an uncorrelated noise model, a S/N=0,4 must also be used just to account for the modeling error 

from processing. In this case, the low posterior resolution makes the inversion results practically 

unusable. In reality, a S/N would probably be chosen in between the two end-members of Case 2 and 

3. Our proposed method allows handling of the processing error by estimating a statistical Gaussian 

model which can subsequently be used for inversion as in Case 1. By allowing for a larger misfit with 
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the observed processed data the inversion prediction is improved, which is suggested by the low rmsd 

value as compared with the two other cases. The posterior resolution is also more trustworthy than Case 

2 as indicated by the logL value. Since the value is close to -241.5 the posterior distribution is 

representing the reference model. Our idealized logs with noise-free raw data allows us to consider a 

scenario with little processing needed to convert into AVA gathers. In a real-world case, the processing 

of actual seismic raw data would require more processing steps, especially to reduce levels of apparent 

noise and weakening of multiples. These additional processing steps would most probably increase the 

modeling error and hence further underpin conclusions above. 

 

 
Figure 3 Posterior distribution of elastic parameters, vP, vS, !, vP/vS and AI for the depth interval of 0,9 
s – 1,1 s for three inversion cases.  The mean model (yellow) is displayed along with the 90% confidence 
interval (dotted blue lines) and the reference model (red). On the right the data is shown as a wiggle 
plot with a-f) Case 1 g-l) Case 2 and m-r) Case 3 
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ABSTRACT

Non-stationarity in statistical properties of the subsurface is often ignored. In a classical

linear Bayesian inversion setting of seismic data, the prior distribution of physical param-

eters is often assumed to be stationary. Here we propose a new method of handling non-

stationary in the variance of physical parameters in seismic data. We propose to infer the

model variance prior to inversion using maximum likelihood estimators in a sliding window

approach. A traditional, and a localized shrinkage estimator is defined for inferring the

prior model variance. The estimators are assessed in a synthetic base case with heteroge-

nous variance of the acoustic impedance in a zero-o↵set seismic cross section. Subsequently,

this data is inverted for acoustic impedance using a non-stationary model set up with the

inferred variances. Results indicate that prediction as well as posterior resolution is greatly

improved using the non-stationary model compared with a common prior model with sta-

tionary variance. The localized shrinkage predictor is shown to be slightly more robust

than the traditional estimator in terms of amplitude di↵erences in the variance of acoustic

impedance and size of local neighborhood. Finally, we apply the methodology to a real data

set from the North Sea basin. Inversion results show a more realistic posterior model than

using a conventional approach with stationary variance.
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INTRODUCTION

Statistical properties of physical parameters for rocks (acoustic impedance, density, porosity,

resistivity etc.) can generally be considered to be spatially non-stationary (Bouchedda et al.,

2017; Sabeti et al., 2017). Seismic data are an important source of spatial information about

the subsurface. Predictions of physical parameters from seismic data should ideally account

for non-stationarity, as a correct prediction of the subsurface is of vital importance for

locating and assessing hydrocarbon content, as well as possible migration paths. Recently,

the incorporation of non-stationarity in seismic inversion has gained increasing interest in

the academic literature. Aune et al. (2013) incorporates non-stationarity in the prior model

by conditioning the model on nearby non-stationary well logs. Locally varying spatial

correlation is also used to introduce non-stationarity in posterior solutions (Bongajum et al.,

2013; Sabeti et al., 2017). By defining local likelihood models, Jullum and Kolbjørnsen

(2016) approximates quantities related to rock properties in a Bayesian inversion setting.

In the following we investigate spatial variability as represented by non-stationary variance.

The notation is as follows. Discrete matrices and vectors are denoted by bold fonts and

their dimensions are written in front of the respective vector and matrix. The n-vector i
n

is a unit-vector of dimension n and the diagonal (n ⇥ n)-matrix I
n

is an identity matrix

of dimension n ⇥ n. A probability density function (pdf) is denoted with p(·), ⇠ means

distributed as, | means conditioned to, |.| is the determinant and N
n

is a normal distribution

of dimension n (see Appendix A)
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MODEL DESCRIPTION

In the current study we consider spatial non-stationarity in the statistical properties arising

from heterogeneous variance in the spatial variable in the two-dimensional domain R2:

{r(x) 2 D ⇢ R2} (1)

discretized to a lattice LD of dimension n

x

⇥ n

y

is,

{r(x);x 2 LD} (2)

represented by the n-vector r with n = n

x

⇥ n

y

. The observations (seismic data) are

represented by the m-vector d. We use a Bayesian spatial inversion framework to describe

the problem of inferring information about r given d. In this setting the characteristics of r

is described by the posterior pdf p(r|d) and follows from the combination of prior pdf p(r)

and likelihood function p(d|r) through Bayes’ theorem (see e.g. Box and Tiao (1992)),

p(r|d) = constant⇥ p(d|r)p(r). (3)

The constant is a normalization constant. In the following we assume that the prior model

is Gaussian and focus is on variability in the observable variable r. Both the likelihood and

prior models are dependent on the model parameters. The parameters of the likelihood are

assumed known, while the prior model parameters ✓
p

are considered to be unknown. We

can then write Equation (3) as,

p(r|d;✓
p

) = constant⇥ p(d|r)p(r;✓
p

). (4)

We assume that the prior model can be described by three model parameters µ
r

, �2

r

, and

⇢

r

(.). Both the expectation and the spatial correlation function ⇢

r

(.) are assumed to be

stationary known, i.e. independent of x. The n-vector �2

r

= [�2

r

(x
1

), . . . ,�2

r

(x
n

)] is the
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marginal variance at the nodes of the lattice LD, is considered unknown and the spatial

variability is represented by the non-stationary variance �2

r

. Consider the joint distribution

of the variable r and data d,

2

6

6

4

r

d

3

7

7

5

⇠ p

0

B

B

@

r

d

;✓
p

1

C

C

A

= p(d|r)p(r;✓
p

) (5)

with ✓
p

= [�2

r

]. There exist two challenges. Using the joint model we need to infer the

model parameters ✓
p

and to predict the physical parameters [r|d]. Maximum marginal

likelihood (MML) estimators are used to infer ✓
p

:

✓̂
p

= argmax
ˆ✓p
{p(d;✓

p

)} (6)

We formulate both a traditional MML and a hierarchical MML estimator. Prediction of [r|d]

is performed using the posterior model in Equation (4) with the inferred model parameter

✓̂
p

as a plugin estimate,

p(r|d; ✓̂
p

) = constant⇥ p(d|r)p(r; ✓̂
p

). (7)

The strategy of inferring model parameters from data and subsequently use the data for

prediction presents a philosophical issue. Prior model and observed data should in principle

come form independent sources (Mosegaard and Tarantola, 2002). However, there is a long

tradition in statistics for using data twice to both infer information of the statistical model

and predict the outcome of an observable variable. The caveat here is, that this practice

usually leads to underestimation of the variance.
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Prior Model

We study the spatial variable {r(x) 2 D ⇢ R2}, and focus on the e↵ect of heterogeneous

variances and consequently let the expected value be spatially stationary,

E{r(x)} = µr (x) = µr ; 8x 2 D (8)

The variance is allowed to vary with the spatial reference,

Var{r(x)} = �

2

r (x); 8x 2 D (9)

This allows assessing the e↵ect of heterogenous variances in the prediction of [r|d]. The

spatial correlation of the two points x
i

and x
j

is shift invariant and given by:

Corr{r(x
i

), r(x
j

)} = ⇢

r

(x
i

� x
j

); 8x
i

,x
j

2 D (10)

If the spatial correlation function is a positive definite function, the covariance function is

also positive definite, since �

r

(x
i

) and �

r

(x
j

) are positive numbers,

Cov{r(x
i

), r(x
j

)} = �

r

(x
i

)�
r

(x
j

)⇢
r

(x
i

� x
j

); 8x
i

,x
j

2 D. (11)

Consider the discrete representation of the spatial variable in the n-vector r. The discretized

Gaussian random field is then,

r ⇠ p(r;✓
p

) = N
n

{r;µ
r

i
n

,⌃
r

} (12)

where µ
r

is the constant expectation value and the covariance (n⇥n)-matrix ⌃
r

represents

the spatial correlation and variance. The covariance matrix ⌃
r

can be decomposed into the

variance field and correlation matrix respectively,

⌃
r

= ⌃�

r

⌃⇢

r

⌃�

r

(13)
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where ⌃�

r

is a diagonal (n⇥n)-matrix with diagonal values �
r

= [�
r

(x
1

), · · · ,�
r

(x
n

)]. The

correlation (n⇥n)-matrix ⌃⇢

r

is constructed by the spatial correlation function in Equation

(10):

[⌃⇢

r

]
ij

= ⇢

r

(x
i

� x
j

) 8i, j = 1, 2, · · · , n (14)

Likelihood Model

We assume a Gauss-linear likelihood model describing the relationship between the data

m-vector d and the n-vector r:

[d|r] = Hr+ e
d

⇠ p(d|r) = N
m

{d;Hr,⌃
d|r} (15)

where the (m⇥n)-matrixH is the observation matrix (forward operator) while e
d

is centered

Gaussian with covariance (m⇥m)-matrix ⌃
d|r. The covariance matrix is partitioned into a

mixture of white and colored noise as proposed in Mosegaard and Tarantola (2002); Buland

and Omre (2003); Madsen et al. (2017),

⌃
d|r = �

2

1

I
m

+ �

2

2

⌃⇢

d|r. (16)

The first part corresponds to the uncorrelated white noise with variance �

2

1

. The second

term represents the colored noise with variance �2

2

and correlation structure⌃⇢

d|r = H⌃⇢

r

HT.

The linear forward operator H embodies the physics of the likelihood model. Seis-

mic data are modeled as a linear convolution between a reflectivity series and a wavelet

as described in e.g. Buland and Omre (2003). Here, we let the observable variable be

relative acoustic impedances Z

P

, i.e. the acoustic variable divided by the expected acous-

tic impedance. The relative acoustic impedances are henceforth simply known as acoustic

impedances and consequently, E{Z
P

(x)} = 1 and unitless. The zero-o↵set plane-wave re-

flection coe�cients are calculated using the procedure defined in Hampson et al. (2013),
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which allows a linear relationship between the logarithm of acoustic impedance and the

reflection coe�cients at zero-o↵set as a 1D vertical convolution of dimension n

y

. To obtain

a full set of n
x

seismic traces d from a 2D profile of n
x

⇥ n

y

acoustic impedances, H is

constructed as follows:

H =
1

2

2

6

6

6

4

0

...

W

. . .

. . .

. . .

W

...

0

3

7

7

7

5

2

6

6

6

4

0

...

D

. . .

. . .

. . .

D

...

0

3

7

7

7

5

(17)

where W is a matrix containing the wavelet and D is a di↵erential operator, both set up

for a single trace. The forward operator H then becomes an (n⇥ n)-matrix, meaning that

the observable variable is available on the lattice LD. The data is then a n-vector d:

{d(x);x 2 LD} (18)

Joint Model

Since the prior and likelihood models are both Gaussian, the joint model (Appendix C) is

given by,

2

6

6

4

r

d

3

7

7

5

⇠ p

0

B

B

@

r

d

;✓
p

1

C

C

A

= p(d|r)p(r;✓
p

) (19)

= N
n+m

8

>

>

<

>

>

:

2

6

6

4

r

d

3

7

7

5

;

2

6

6

4

µ

r

i
n

Hµ

r

i
n

3

7

7

5

,

2

6

6

4

⌃
r

�
rd

�
dr

⌃
d

3

7

7

5

9

>

>

=

>

>

;

(20)

where the covariance (n⇥ n)-matrices �
rd

and �
dr

between the r and the observed data d

are given by,

�
rd

= ⌃
r

HT and �
dr

= H⌃
r

(21)

and the covariance of the data is given by,

⌃
d

= H⌃
r

HT +⌃
d|r. (22)

8



Using this joint model, one can infer the model parameter ✓
p

= [�2

r

] and predict the physical

parameter [r|d].

SIMULATION SETUP DESIGN

We present the following synthetic Base Case (BC) for testing the ability to infer the variance

of r and to predict [r|d] given the inferred variances and the data. The BC consist of a grid

with n

x

= 61 seismic traces and n

y

= 81 samples, giving n = 61 ⇥ 81 = 4941 observable

variables of acoustic impedance. This grid is considered the reference domain LD.

Base case - Prior Model

For the BC the expectation is,

E{r(x)} = E{ln(Z
P

(x))} = µ

r

= 0. (23)

The reference variance �

2

r

= 0.001. The standard deviation vector �
r

is scaled with a

heterogenous scaling (n
x

⇥ n

y

)-matrix S as

�
r

= [�
r

S(x
1

), · · · ,�
r

S(x
n

)]. (24)

The chosen matrix S scales the reference standard deviation between one and five times and

is displayed in Figure 1a. The spatial correlation is described by an anisotropic spherical

correlation function,

⇢

r

(x
i

� x
j

) = ⇢

r

(h) =

8

>

>

>

>

<

>

>

>

>

:

1� 3h

2a

� 3h

3

2a

3

if h  a

0 if h > a

(25)

where a is the range parameter and h is the normalized distance between two locations.

This model is positive definite. Geological layers in the subsurface are typically more con-
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tinuous in the horizontal than vertical direction. To induce anisotropy into the spherical

model we introduce an anisotropy factor  between the horizontal (u) and vertical (v) com-

ponent of h, so h =
p

(h
u

)2 + (h
v

)2 =
p

(x
i

� x
j

)2
u

+ (x
i

� x
j

)2
v

. In the BC, a = 5 and

the anisotropy factor  = 5, creating elongated structures in the horizontal direction. A

reference realization r (Equation 12) from the BC prior model is generated using Cholesky

decomposition and is displayed in Figure 1b.

Base case - Forward Model

A Ricker-wavelet (Aki and Richards, 1980) with center frequency f

c

= 40 Hz, with sampling

rate 2 ms, wavelet length n

w

= 21, and normalized amplitude is used to set up the wavelet

matrix W which is displayed in Figure 1c. The resulting observed zero-o↵set seismic signal

is calculated for all traces by Hr without adding noise, and can be seen in Figure 1d as a

wiggle plot.

Base case - Noise Model

The synthetic data is added noise e
d

with signal-to-noise ratios (S/N) of 15 and 3 for the

uncorrelated (S/N
unc

) and correlated (S/N
cor

) noise respectively. The variance of the noise

in Equation 16 is here computed by dividing the reference variance with the desired S/N,

�

2

1

=
�

2

r

S/N
unc

and �

2

2

=
�

2

r

S/N
cor

.

The low level of uncorrelated noise for the synthetic BC is a fairly realistic depiction of

the general level of uncorrelated noise in seismic data. Uncorrelated noise can typically be

filtered out during processing of seismic data using simple frequency filtering techniques

(Vecken and Da Silva, 2004). The remaining noise in seismic data will therefore usually

10



max(S) f

c

(Hz) Samp. rate (ms) n

w

S/N
cor

S/N
unc

5 40 2 10 3 15

Table 1: Setup of parameters in BC.

tend to resemble the frequency content of the signal (Madsen et al., 2017). The shape of

the colored noise is therefore assumed to imitate data as H⌃
r

HT. A noise realization e
d

is

drawn from the resulting noise distribution in Figure 1e. The final synthetic data set d is

shown in Figure 1f. The parameters used in the BC are summarized in Table 1.

MODEL PARAMETER INFERENCE

The model parameters ✓
p

= [�2

r

] are inferred using MML estimators. The variance should

be estimated locally due to the imposed non-stationarity in the variance. In the following

we assume that both mean and spatial correlation function are known a priori. This allows

us to only assess the e↵ect of spatial non-stationarity in the variance, {�2

r

(x);x 2 D}.

In order to locally estimate the variance we first define a local neighbourhood� for infer-

ence. Consider an arbitrary location x
0

in D. In the data domain the local neighbourhood

is symmetric around x
0

including data points from nearby traces as displayed in Figure 2a.

We denote the resulting subset of the data n

�

d

-vector d
�

with n

�

d

= 11. Since each datum

is a↵ected by several spatial variables through the 1D convolution in the forward operator

H, the corresponding neighbourhood in r covers a larger area as displayed in Figure 2b.

The size of this neighbourhood intrinsically depends on the width of the wavelet n
w

. The

resulting subset of the spatial variable n

�

r

-vector is denoted r
�

with n

�

r

= 121.
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Traditional estimator

In the following we define a traditional MML estimator within the local neighbourhood �.

The prior and joint models follow analogous to the global prior and joint models, described

earlier. The local prior model is,

r
�

⇠ p(r
�

;✓
p�

) = N
n

�

r
{r

�

;µ
r

i
n

�

r
,⌃

r�

} (26)

with the local joint model between data and observable variables,
2

6

6

6

6

4

r
�

d
�

3

7

7

7

7

5

⇠ p

0

B

B

B

B

@

r
�

d
�

;✓
p�

1

C

C

C

C

A

= p(d
�

|r
�

)p(r
�

;✓
p�

) (27)

= N
n

�

r +n

�

d

8

>

>

>

>

<

>

>

>

>

:

2

6

6

6

6

4

r
�

d
�

3

7

7

7

7

5

;

2

6

6

6

6

4

µ

r

i
n

�

r

H
�

µ

r

i
n

�

r

3

7

7

7

7

5

,

2

6

6

6

6

4

⌃
r�

�
rd�

�
dr�

⌃
d�

3

7

7

7

7

5

9

>

>

>

>

=

>

>

>

>

;

. (28)

Within this� neighbourhood we assume stationarity of the variance �2

�

. The local standard

deviation (n�

r

⇥n

�

r

)-matrix ⌃�

r�

is then equal to �

�

I
n

�

r
. The local prior covariance follows

from Equation (13) and is given by,

⌃
r�

= ⌃�

r�

⌃⇢

r�

⌃�

r�

= �

2

�

⌃⇢

r�

(29)

and the local covariance of the data given by,

⌃
d�

= H
�

⌃
r�

HT
�

+⌃
d|r� (30)

Combining Equation (30) with the noise model in Equation (16) yields,

⌃
d�

= H
�

⌃
r�

HT
�

+ �

2

1

I
n

�

d
+ �

2

2

⌃⇢

d|r�. (31)

Since seismic data are usually mainly a↵ected by correlated noise, the uncorrelated noise

can be left out of Equation (31). If we furthermore assume a proportionality c between the
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variance of the data �

2

2

and the local prior variance �

2

�

,

�

2

2

= c�

2

�

(32)

the local covariance of the data can be described as,

⌃
d�

= �

2

�

(H
�

⌃⇢

r�

HT
�

+ c⌃⇢

d|r�) = �

2

�

⌦ (33)

where ⌦ = H
�

⌃⇢

r�

HT
�

+ c⌃⇢

d|r�. This assumption of proportionality basically means, that

the amount of noise in the data is coupled to the variance in r. If for example the variance

of r is changing drastically due to a fault, we expect the noise on the date to change

accordingly. The local marginal likelihood of the data, assuming µ

r

and ⇢

r

(.) known, is

then Gaussian with the following distribution from Equation (28),

d
�

⇠ p(d
�

;�2

�

) = N
n

�

d
(d

�

;H
�

µ

r

i
n

�

r
,�

2

�

⌦). (34)

The variance can be inferred locally by finding the variance �

2

�

that maximizes the local

marginal likelihood,

�̂

2

�

= argmax
�

2

�

{p(d
�

;�2

�

)}. (35)

The maximum of the marginal likelihood p(d
�

;�2

�

) can be obtained analytically, and the

final traditional estimator takes the following form,

�̂

2

�

=
1

n

�

r

(d
�

�H
�

µ
r,�

)T⌦�1(d
�

�H
�

µ
r,�

). (36)

By applying the estimator across the whole data area (using a sliding window approach)

a non-stationary variance can be obtained for all grid locations in LD, except those at the

boundaries where the neighbourhood is reaching outside the data area.
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Hierarchical estimator

In addition to the localized traditional MML estimator, we also use a localized hierarchi-

cal MML. This estimator appears as a ”shrinkage” estimator, meaning that the variance

estimate is constrained by a hyper distribution on the variance. We introduce a random

variable s

2

r

representing the variance �

2

r

. We let s2
r

be inverse gamma distributed, which is

a conjugate prior model for Gaussian models,

s

2

r

⇠ p(s2
r

) = IG{s2
r

; ✏
s

, �

s

} (37)

where ✏

s

and �

s

are the model parameters (shape and scale respectively) of the inverse

gamma distribution. The inverse gamma distribution acts as a hierarchical distribution de-

scribing the variance, i.e. a hyperprior distribution. The parameters ✏
s

and �

s

are therefore

also known as hyperparameters. This additional level in the stochastic model is visualized

in Figure 3 as a direct acyclic graph. The rest of the stochastic model is unchanged, so

for the local neighbourhood � the marginal likelihood of the data d
�

follows from Equation

34,

d
�

⇠ p(d
�

|s2
�

) = N
n

�

d
(d

�

;H
�

µ

r

i
n

�

r
, s

2

�

⌦). (38)

The local variance s

2

�

conditioned on the neighbourhood data d
�

follows from Bayes’ the-

orem:

[s2
r

|d
�

] ⇠ p(s2
r

|d
�

; ✏
s

, �

s

) = IG{s2
r

; ✏
s|d, �s|d} (39)

with the posterior expectation of the two hyperparameters, shape parameter ✏
s|d and scale

parameter �
s|d,

✏

s|d = ✏

s

+
n

�

d

2
(40)

�

s|d = �

s

� 1

2
(d

�

�H
�

µ

r

i
n

�

r
)T⌦�1(d

�

�H
�

µ

r

i
n

�

r
). (41)
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The final hierarchical estimator is defined as,

e�

2

�

= E{s2
r

|d
�

, ✏

s

, �

s

)} =
�

s|d
✏

s|d � 1
. (42)

The hierarchical estimator defined above requires a prior selection of reasonable values

for the hyperparameters ✏

s

and �

s

. We propose to estimate the properties of the assumed

hyperprior using an empirical Bayesian approach similar to that of Asfaw and Omre (2016).

Using the traditional estimator and the sliding window approach, the variance s2
�

can be

estimated for all possible grid locations in LD. This set of estimated variances is then treated

as a super-population of s2
�

which allows the estimation of a global mean µ

s

and variance

�

2

s

of s2
�

. Let µ̂

s

and �̂

2

s

be the average and empirical variance of this super population,

which are then used to infer the hyperparameters in the inverse gamma prior model,

�

s

= µ̂

s

✓

µ̂

2

s

�̂

2

s

+ 1

◆

(43)

✏

s

=
µ̂

2

s

�̂

2

s

+ 2. (44)

POSTERIOR MODEL

The prediction of the physical parameters [r|d] is performed using Bayesian spatial inver-

sion. The posterior model follows from Bayes’ theorem. The general posterior model for a

Gaussian prior model and linear-Gaussian likelihood model, is:

[r|d] ⇠ p(r|d) = constant⇥ p(d|r)p(r) = N
n

{r;µ
r|d;⌃r|d} (45)

where the resulting mean µ
r|d is given by,

µ
r|d = µ

r

i
r

+ �
rd

⌃�1

d

(d�Hµ

r

i
r

) (46)
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and the posterior covariance ⌃
r|d,

⌃
r|d = ⌃

r

� �
rd

⌃�1

d

�
dr

. (47)

INFERENCE RESULTS

The neighbourhood configuration � presented in Figure 2 is contained within traces

n

x

= [6; 56] and samples n

y

= [12; 69] in LD. The variance estimates from the tradi-

tional estimator (�̂2

r

) and the shrinkage estimator (e�2

r

) are obtained from d in Figure 1f.

The histograms of �̂2

r

(orange) and e�2

r

(yellow) are shown in Figure 4a along with the

IG-prior (black line) estimated using empirical Bayes. The estimated hyper-parameters

are ✏ = 2.63 and � = 3.89 ⇥ 10�3. The traditional estimator, �̂2

r

, tend to underestimate

the reference variance �

r

= 0.001 slightly. The IG-prior constraints the variance estimate

of the hierarchical estimator e�2

r

which lead to higher values. Simultaneously, some of the

higher values of �̂2

r

are constrained in the e�2

r

estimate. In general, the distribution of e�2

r

is

narrower than for �̂2

r

, which aligns with the general properties of the shrinkage estimator.

The true variance �2

r

is subtracted both estimated variances in Figure 4b-c. Preferably

all values should be zero, indicating a perfect estimation of the prior variance. The estimate

from the shrinkage estimator is smoother due to the a priori constraint on the variance.

Both estimators are able to capture some of the heterogenous variance. Some areas of

higher variance are lowered to zero, while others are only partially. The actual variance

is on overall underestimated, which is expected. The biggest di↵erence in the variance

estimate is roughly 0.02. The striped appearance of the variance estimates are likely due

to e↵ects from the smooth wavelet and the neighbourhood configuration. Furthermore, the

results are only based on a single realization of r and computed data set d. For a di↵erent
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prior realization r and noise e
d

, the d would be di↵erent and hence the inference result.

By repeating the inference for di↵erent prior and noise realizations r and e
d

, we asses

whether the in-homogeneous variance pattern in the reference prior is obtainable on average.

The average for 50 repetitions of both MML estimators are displayed in Figure 4d-e. The

average pattern is smoother than for the single inference result for both estimators. The

striped e↵ect of the wavelet is diminished for the average. The biggest di↵erence in the

variance estimate is roughly 0.013. In summary, it is possible to infer the variance pattern

of r to a reasonable degree. The traditional estimator is better at capturing some of the

high values in the variance, but is prone to underestimate areas of the low variance for a

single realization. The hierarchical estimator improves this underestimation, but is worse

at capturing areas of high variance. The two inference results will ultimately be judged by

their further application, since variance estimates of physical observables are usually not

the ”end goal”.

INVERSION RESULTS

We invert the observed data set d in the BC (Figure 1f) using six di↵erent prior models

(M). The BC noise model and forward model are used for all posterior models to enable a

fair comparison between each prior model. M0: As a reference we set up an inversion case

with the reference prior variance ✓
p

= [�2

r

]. This is an absolute best case scenario using

linearized Bayesian inversion, as we use exactly the same setup for prediction of [r|d] as to

generate the synthetic data. This is sometimes also referred to as the ’inverse crime’ in the

literature (e.g. Wirgin (2004)). M0 thereby serves as a great comparison for alternative

variance models.
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M1: Here we use the inferred prior model ✓̂
p

= [�̂2

r

] as a plug-in estimate of the

variance. M2: Here we use the inferred prior model e✓
p

= [e�2

r

] as a plug-in estimate of

the variance. M3-M5: Prior information regarding non-stationarity in the variance of

observable variables are usually not available. A common approach is therefore to use

stationary variance in the prior model. In M3-5 we use stationary variance in the prior

models. M3-4 use a variance equivalent to the lowest and highest variance in the BC

respectively. In M5, we propose to relax the constraints on the variance, i.e. we assume a

stationary prior distribution with very high variance. The motivation for applying a ’broad’

prior distribution comes from the notion that prior distributions do not always need to be

realistically concentrated around the true values of the observable variables (Gelman et al.,

2014). The main argument here is that if data carry su�cient information about the spatial

variables, this should far outweigh the broad prior variance. The benefit of this strategy

is that subjective (expert) elicitation is lessened and prior models are presumably more

’objective’ (Simpson et al., 2017). In practice we assume a prior model with variance 3

times higher than in M4.

Qualitative assessment

We asses each of the resulting Gaussian posterior distributions qualitatively by generating

posterior realizations r̂⇤ of [r|d] using Cholesky decomposition. Each of these realizations

represent a solution to the probabilistic inverse problem. We denote solutions of M0 as

r̂⇤,opt because M0 represents the best possible (optimal) solution. We can asses each other

posterior model qualitatively by visually comparing how well r̂⇤ from the other models

resembles r̂⇤,opt. Figure 5 shows three di↵erent posterior realizations (r̂1, r̂2, and r̂3) drawn

from the six respective posterior distributions. Each realization is drawn with the same
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random seed for comparative purposes. The posterior realizations from M1 (b,h, and n)

and M2 (c,i, and o) are almost impossible to discriminate visually. The M1 realizations are

however showing slightly higher values than M2. This is in accordance with the inference

results. Both models show a fair resemblance to the best solution, with a good match

between areas of high and low variance. We do see less ability to match the highest values

of M0, due to the lower prior variance in the two estimates than the true variance. The

optimal posterior variance in M0 is overall visually well represented by both M1 and M2.

The results from M3 (d,j and p), M4 (e,k and q) and M5 (f,l and r) show the weakness of

applying a stationary prior variance model for a subsurface with non-stationary properties.

In M3, the posterior realizations match with M0 in the areas of low variance, as they

are similar. Unfortunately, the high variance areas are not represented very well, as the

prior variance is lowering the resulting posterior variance. The opposite is experienced

for M4, where areas of high variance are obtained better than in any of the other models.

Unfortunately, areas of low variance are greatly misrepresented by the posterior result, since

the data are not able to constrain the prior variance. This problem also occurs in the final

model, where the broad prior variance is not outweighed by the data likelihood.

Quantitative assessment

We introduce the Kullback and Leibler (1951) divergence (D
KL

) as a measure of the sim-

ilarity between two distributions. The D

KL

for each posterior model [r|d] compared with

the distribution of the optimal posterior model [r|d]opt is calculated as,

D

KL

([r|d]opt||[r|d]) = 1

2

 

tr(⌃�1

r|d⌃
opt

r|d ) + (µ
r|d � µopt

r|d )
T⌃�1

r|d(µr|d � µopt

r|d )� n+ ln

 

|⌃
r|d|

|⌃opt

r|d |

!!

(48)
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Low values of D
KL

indicate a high resemblance between the two posterior distributions.

We introduce the log-likelihood (logL) as a measure of how representative each posterior

distribution is of the reference model. Because r is a realization from a multivariate Gaussian

distribution and each posterior distribution is likewise Gaussian, the log-likelihood follows

by taking the logarithm of the Gaussian likelihood function,

logL = ln(N
n

(r;µ
r|d,⌃r|d)) = �1

2

⇣

n ln(2⇡) + ln |⌃
r|d|+ (r� µ

r|d)
T⌃�1

r|d(r� µ
r|d)
⌘

(49)

Higher logL-values indicate that r is more likely to be considered a possible realization from

the given posterior model.

We construct 50 new data sets d using the BC setup. We repeat the method of inferring

the variance and subsequently invert these 50 data sets for acoustic impedance. Using

Equation (48) and (49) we calculate the D

KL

and logL, and present the average value for

all 50 inversions in Table 2. The results in Table 2, maintain and emphasize the visual

conclusions drawn from Figure 4. For the prior models with stationary variance, the logL

of M4 is larger than M5, and especially M3, meaning that M4 is better at capturing the

reference model while still having a smaller posterior variance. On average, M4 can therefore

be considered the best stationary prior model for the BC. However, in general, the inferred

non-stationary variance models are superior to any of the stationary models. Of the two,

the variance estimate e�2

r

obtained using the hierarchical estimator is slightly preferably in

both quantifiable measures.

Sensitivity analysis

The BC represents a specific synthetic setup for which the estimatiors are assessed. In the

following we investigate the sensitivity of the inversion results in terms of the amplitude
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M1 M2 M3 M4 M5

avg. D
KL

640,6 530,9 5337,9 994,3 2304,7

avg. logL 4618,1 4727,6 -100,4 4266,0 2956,3

Table 2: Summary of 50 BC inversions. Displayed is the average Kullback-Leibler divergence

(D
KL

), and log-likelihood (logL)

of variance di↵erence (max(S)), size of neigbourhood (n�

d

), and correlated noise level in

the observed data (S/N
cor

). The sensitivity for these parameters is quantified using the

approach used in Table 2, i.e. generating 50 data sets and calculate the average values of

D

KL

, and logL. The results are shown in Figure 6.

Because there is an underlying assumption of non-stationarity in the variance of the

observable variables, it is important to test the e↵ect of the di↵erence between areas of high

and low variance. In the BC we assumed this di↵erence to be 5 times as high (max(S) = 5).

We investigate the sensitivity of max(S) in the interval between 1 and 9, where max(S) = 1

is equal to a reference model with homogeneous variance. For max(S) = 1, M3 (yellow) and

M4 (purple) are identical to the reference prior. M5 (green) with the broad prior variance

is substantially outperformed by all other models for max(S) = 1. More importantly, the

sensitivity analysis indicate that the inversion results for M2 (red) using the variance inferred

with the hierarchical estimator, are more reliable and precise, already when the di↵erence is

only max(S) = 1.5. I.e. very little di↵erence in the variance of physical parameters is needed

for the non-stationary estimates to be feasible. For inversion using the variance obtained

with the traditional estimator in M1 (blue), the point of feasibility is max(S) = 2.5. For
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variance di↵erences larger than max(S) = 2.5, the two non-stationary models are superior

to the stationary models for both quantifiable measures.

Noise levels on seismic data are usually not fully disclosed, in fact the opposite is true

in many instances. For this reason we investigate the e↵ect of the noise level S/N
cor

on the

inversion results. For all S/N
cor

, the two non-stationary variance estimates are significantly

providing better results than any of the stationary models. Of the two, M2 is slightly

preferable for low S/N
cor

, whereas the results are similar for high S/N
cor

. Thus, the inversion

results using the non-stationary variance models are significantly better than using the

stationary models, regardless of noise level on the data.

Finally, we investigate the e↵ect of neighbourhood size n

�

d

in the inversion results. As

seen in Figure 2, the n�

d

is a measure of how many data points and hence traces are included

in the local window. M3-M5 are obviously una↵ected by the change in neighbourhood size

of the two localized predictors, and show the BC value for all three quantifiable measures.

Both M1 and M2 show general improved results from higher n�

d

, i.e. including more traces

in the prediction. However, the pattern of improvement flattens out for n�

d

> 17 and will

get worse for even larger neighbourhood sizes as the neighbourhood goes towards the global

solution. M2 has superior results for all neighbourhood sizes in all measures compared with

the best possible stationary model (M4). For M1, when only few traces are used in the

estimate, the results become worse than for the stationary models. This is especially visible

for the results of D
KL

and logL which show extreme values for small n�

d

. For n�

d

> 13, M1

is slightly better than M2. Despite this small preeminence for larger neighbourhood sizes,

M2 is probably more robust than M1 in terms of neighbourhood size, due to the shrinkage

properties of the hierarchical model.

22



REAL DATA CASE - NINI FIELD

We apply our proposed methodology and work-flow for a real data case from the Nini

exploration field in the danish North Sea. Hydrocarbons in the Nini field are associated

with re-mobilized sands (Tyr sand) above an active salt diapir (Svendsen et al., 2010). The

Tyr sand is overlyain by the Vile shale, trapping the hydrocarbons. The expected large

di↵erences in subsurface variability, coupled to the presence of hydrocarbon rich sands, as

well as the salt diapir, presents a justifiable real world application for the methodology. The

zero-o↵set section of inline 1283 cuts across the salt diapir and is used as observed data d.

The observed data is shown in figure 7a. For inferring the variance of acoustic impedance, we

use the likelihood model in equation 15. We use the accompanying estimated wavelet from

the seismic section, to setup the linear forward operator H. From the nearby Nini-1a well,

we establish an a priori variance of �2

r

= 0, 0138. We choose an anistropic spherical model

as the stationary correlation function ⇢

r

(.) as described in the BC. The range parameter

is set to a = 2, and the anisotropy factor is set to  = 5. This creates relatively thin

and elongated structures in the prior model realizations. The noise model is set up as in

the BC. The noise level is assumed to be S/N
unc

= 7 and S/N
cor

= 1.5, hence the main

part of the noise is assumed to be correlated. The value of S/N
cor

= 1.5 is a conservative

choice for the noise level, in order to lower the risk of overfitting the data. This conservative

choice might lead to slight overestimation of the variance of the acoustic impedance in the

posterior model. The variance is inferred using the hierarchical MML estimator. The ratio

between variance of model parameters and noise is approximated with equation D-2 and

the assumed signal-to-noise ratios. The local neighbourhood configuration is similar to that

in Figure 2, i.e. n

�

d

= 11. We choose this configuration based on two criteria. Firstly,

the BC showed that subsequent inversion benefits from a certain minimum neighbourhood
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size. Secondly, to minimize the smoothing from the estimator, the neighbourhood must not

become to large.

The inferred prior model e✓
p

= [e�2

r

] is presented in Figure 7b. The estimated variance is

generally higher around the salt diapir. Since the variance estimate is coupled to the data, it

is sensitive to changes in the data which can not be described by the noise model. In practice

this means that if the data in certain areas does not show any variability, neither will the

variance estimate. If a feature in the data, like a ”bad trace” with lower data variance, is

used in the variance estimate, then it drags the result in a direction of less variance. This

can for instance be seen around crossline 6940 where the high variance estimate is lowered

in a region due to low variance in the data. If we consider this variance to arise from the

same layer, it would be geologically sound to suggest that the properties of this layer are

not suddenly changing. The drop in variance is most likely an e↵ect of ”bad” data. For

hydrocarbon exploration purposes we are probably more interested in regions close to the

salt diapir where the variance is high and the e↵ect is not as strong. Yet, the variance

estimate’s susceptibility to unmodeled features in data is still a weakness of the proposed

methodology.

We invert the data presented in Figure 7a using equation 46 and 47 for two di↵erent

prior models. MA: Here we use a prior model with stationary variance based on the a priori

variance (�2

r

= �

2

r

i
n

) obtained from the well log. Having a global stationary behavior of

the model parameters is the conventional geostatistical methodology for inverse problems

(Sabeti et al., 2017). MB: Here we use the inferred prior model with non-stationary variance

e✓
p

= [e�2

r

] as a plug-in estimate of the prior variance.

Figure 8 shows 3 di↵erent posterior realizations of relative acoustic impedance (AI1 =
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exp(r̂1), AI2 = exp(r̂2), and AI3 = exp(r̂3)) drawn of the posterior distribution from both

models using the same random seed for comparison. We stress the point that all realizations

are probable representations of the subsurface. The diversity between each of the three

realizations is a visual measure of the posterior variance, i.e. the final uncertainty on

the relative acoustic impedance. In MA, the posterior variance is stationary, as data is

mainly a↵ecting the mean value. The biggest di↵erences between MA and MB are found

around the salt diapir. The non-stationary prior variance allows more variability in the

posterior solutions, as seen by the darker colors in MB than MA. The internal variance

between the realizations of MB is also clearly higher around the salt diapir, than in MA.

Meanwhile, the variability of areas adjacent to the salt diapir is generally lower, seen by the

dominantly yellow color of the realizations in MB. For all realizations of MB, some areas

are generally showing a higher relative acoustic impedance than in MA, as for instance

seen by the recurring structures on top of the salt diapir. This sudden change in acoustic

impedance could potentially be linked with the presence of hydrocarbons in the area, which

are generally found on the top of the salt diapir.

Using the inferred non-stationary variance for inversion of the Nini data, reveals that

areas with potential hydrocarbons are highlighted. The posterior variability is larger around

these areas, whereas less important areas show less variability. The final posterior variance

is probably more realistic than the stationary variance in MA.

CONCLUSIONS

Spatial non-stationarity in observable variables are usually not possible to account for in

standardized linearized Bayesian inversion of seismic data, as prior estimates of the variance

are usually assumed to be stationary. Clearly, the validity of this assumption is low for
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complex geological scenarios. The variance estimate, is usually derived from nearby seismic

well logs. These logs may even be placed far from the actual seismic acquisition area, which

should provide some additional uncertainty on the prior variance estimate. Our proposed

methodology allow spatial non-stationarity in the prior variance. An additional benefit,

is the consistency of the inferred variances. Rarely, one knows whether the stationary

prior estimate is close or far from the actual variance in the subsurface, i.e. if the prior

estimate is a Model 3 or Model 4, or maybe even a Model 5 scenario. Estimating the non-

stationary variance prior to inversion limits this issue, as variance estimates are generally

more consistent in a scenario with heterogenous variance of physical parameters in the

subsurface.

Inversion results suggest that uncertainty estimates becomes more trustworthy, i.e.

higher logL and lower D

KL

. Trustworthy estimates of the posterior variance are essen-

tial when uncertainties are propagated further to other seismic disciplines. If false posterior

uncertainties are propagated further in e.g. rock physics, the resulting rock physics param-

eters would probably lead to serious under- or overestimation of potential hydrocarbons in

the subsurface. Our results indicate that the a↵ectability of posterior variance is coupled

to prior variance in the posterior model. Data instead provides more information on the

mean model. In other words, the variance asked for, is roughly the variance obtained. The

hierarchical MML estimator is generally the best performing and more robust of the two

estimators in terms noise and variance levels.

The estimated prior model (Model B) demonstrates the applicability of the proposed

methodology for a real data set. The field example does display one potential weakness of

the proposed method. The variance estimates are susceptible to areas with features that

are not explained in the noise model, such as “bad traces”. This method can potentially be
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further improved by a better description of the noise in the data.

Finally we comment on the philosophical issue mentioned in the introduction. In the

proposed work-flow of applying the inferred variances as prior information, both inference

and prediction are performed using the same data set. The distinction between prior infor-

mation and data thereby becomes undesirably fuzzy (Scales and Snieder, 1997). However, a

clear distinction is perhaps rarely the case in any real world application. In accordance with

the expectations outlined in the introduction, the variance is slightly underestimated using

the proposed work-flow. From a practitioners point of view, our results indicate that a more

correct posterior distribution can be obtained in a scenario with heterogeneous variance in

the subsurface, than e.g. applying a traditional stationary variance for inversion.
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APPENDIX A

THE GAUSSIAN DISTRIBUTION

The multivariate Gaussian probability density function p(r) for a variable r with mean µ

and covariance ⌃ is given by (Johnson and Wichern, 2007)

p(r) = (2⇡)�n/2|⌃|�1/2 exp

⇢

�1

2
(r� µ)T⌃�1(r� µ)

�

(A-1)

where n is the dimension of the vector r and |⌃| denotes the determinant of the covariance

matrix ⌃. A compact notation form is r ⇠ N
n

(r;µ,⌃).

APPENDIX B

THE INVERSE-GAMMA DISTRIBUTION

The univariate inverse gamma distribution for a variable x with shape parameter ✏ and

scale parameter � is defined by the probability density function (Ghosh and Robert, 2007).

f(x; ✏, �) =
�

✏

�(✏)
x

�(✏�1) exp
n

��

x

o

(B-1)

where �(.) is the Gamma function and ✏ 2 R1

+

+ 2 and � 2 R1

+

. The expectation and

variance of x for the IG distribution, in terms of ✏, and � is described by:

E{x} =
�

✏� 1
(B-2)

Var{x} =
�

2

(✏� 1)2(✏� 2)
(B-3)

A compact notation form is x ⇠ IG(x; �, ✏).

30



APPENDIX C

THE JOINT DISTRIBUTION

The joint multivariate Gaussian variables of r
1

⇠ N
n

1

(r
1

;µ
1

,⌃
1

) and r
2

⇠ N
n

2

(r
2

;µ
2

,⌃
2

)

takes the following form (Johnson and Wichern, 2007):
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and the conditional distribution of r
1

given r
2

is also Gaussian

r
1

|r
2

⇠ N
n

1

(µ
1|2,⌃1|2) (C-2)

where the expected mean and covariance are given by:

µ
1|2 = µ

1

+⌃
12

⌃�1

22

(r
2

� µ
2

) (C-3)

and

⌃
1|2 = ⌃

11

�⌃
12

⌃�1

22

⌃
21

(C-4)

APPENDIX D

THE CHOICE OF C

Both MML estimators require a choice of c, which reflects the assumed ratio between the

variance of noise and model parameters (�2

2

= c�

2

�

). The a priori choice of c represents

a challenge of itself. For the BC, the realization r from the reference prior distribution is
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known. This allows us to estimate a global value of c for the specific realization in the BC

as:

c =
�

2

2

�

2

�

⇡ Var(e
d

)

Var(r)
(D-1)

For the realization of e
d

and r presented in Figure 1 the c-value is equal to 0.1766. For a

sample of 1000 realizations of e and r, we obtain the probability density distribution of c

with the BC S/N using equation D-1. The resulting histogram of the sample is shown in

Figure D-1a. The distribution is slightly skewed which is attributed to the non-stationarity

in the variance of e
d

and r. The value of c for the current setup is varying between 0.1 and

0.5 with a sample mean = 0.229 (blue dot) and mode = 0.208 (red dot). Because r is only

available due to the synthetic nature of the BC, we suggest to use the ratio between the a

priori levels of �2

r

and �

2

e

as an approximation of c. Letting �

2

e

be the average of the noise

variances �2

1

and �

2

2

in equation 16, we obtain an approximate c̃ for the BC:

c̃ =
�

2

e

�

2

r

⇡
�

�

2

1

+ �

2

2

�

2�2

r

=

⇣

�

2

r

S/N

unc

+ �

2

r

S/N

cor

⌘

2�2

r

=
1

2

✓

1

S/N
unc

+
1

S/N
cor

◆

(D-2)

For the S/N in the BC, we obtain an approximate c̃ equal to 0.192 (black dot). c̃ is

reasonably close to the mean value from the sample (blue dot) and almost identical to the

mode. In order to further asses the robustness of the approximation in equation D-2 we

propose a high and low S/N case. A histogram corresponding to Figure D-1a) is produced

for both a high S/N case (S/N
unc

= 30 and S/N
cor

= 10) and a low S/N case (S/N
unc

= 3

and S/N
cor

= 1) in Figure D-1b-c respectively. Both histograms show the same shape of the

distribution as in Figure D-1a. For the high S/N case the values of c are however lower and

vice versa for the low S/N case. In both cases the approximate c̃ is fairly close to the mean

and mode of the sample. The two alternative cases provide evidence of robustness of the

c-estimate in terms of noise level on the data. In all three cases, c̃ is slightly underestimating

the mean of the sample. Regardless, we consider c̃ a reasonable approximation for c based
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only on a priori information available about the S/N. For a real data case the estimate of

c-estimate depend on good a priori knowledge of noise levels.
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LIST OF FIGURES

1 Base case. a) S: Scaling matrix, b) r: Realization from prior distribution, c) W:

Wavelet matrix used for the BC, d) Hr: Seismic response from r, e) e
d

: Error realization,

f) d: Synthetic seismic data set

2 Local neighbourhood (�) configuration in d and r around location x
0

(blue).

3 The stochastic model as a directed acyclic graph. The nodes are representing

stochastic variables and the black arrows show probability dependencies. The hierarchical

level of the inverse gamma prior is marked with a dotted rectangle.

4 Results from inference of prior variance in the base case using the two MML estima-

tors. a) Distribution of acoustic impedance variance for �̂2

r

(red) and e�2

r

(yellow) obtained

using the two localized estimators. The black line indicate the IG prior distribution with

estimated ✏

s

and �

s

obtained using empirical Bayes. b) Di↵erence between inference result

and true variance: �2

r

� �̂2

r

. Yellow colors indicate underestimation of the variance and blue

colors indicate overestimation of the variance. c) Di↵erence between inference result and

true variance: �2

r

� e�2

r

. d-e) : Same plot as in b) and c), but for an average of 50 inference

results

5 Posterior realizations r̂⇤ (a-r) for prior models M0-M6

6 Summary of sensitivity analysis in terms of D

KL

(top row), and logL (bottom

row). The sensitivity is shown for three parameters max(S) (a and d), S/N
cor

(b and e) and

size of neighbourhood n

�

d

(c and f). The results are displayed for the two heterogeneous

variance models: M1 (blue) and M2 (red), and the three homogeneous variance models: M3

(yellow), M4 (purple), and M5 (green). The BC value of each parameter are marked with

a stippled line

7 a) Observed data (d): Nini inline 1283. b) Inferred variance estimate e�2

r

.
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8 Posterior realization of Nini inline 1283. Results are shown for the two prior mod-

els, MA (a,c and e) and MB (b,d and f).

D-1 Histograms of c-values obtained from a sample of using equation D-1. a) S/N is

equal to that of the BC (S/N
unc

= 20 and S/N
cor

= 3), b) High S/N (S/N
unc

= 30 and

S/N
cor

= 10), and c) Low S/N (S/N
unc

= 3 and S/N
cor

= 1)
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Figure 1: Base case. a) S: Scaling matrix, b) r: Realization from prior distribution, c) W:

Wavelet matrix used for the BC, d) Hr: Seismic response from r, e) e
d

: Error realization,

f) d: Synthetic seismic data set

–
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Figure 2: Local neighbourhood (�) configuration in d and r around location x
0

(blue). –
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Figure 3: The stochastic model as a directed acyclic graph. The nodes are representing

stochastic variables and the black arrows show probability dependencies. The hierarchical

level of the inverse gamma prior is marked with a dotted rectangle.

–
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Figure 4: Results from inference of prior variance in the base case using the two MML

estimators. a) Distribution of acoustic impedance variance for �̂2

r

(red) and e�2

r

(yellow)

obtained using the two localized estimators. The black line indicate the IG prior distribution

with estimated ✏

s

and �

s

obtained using empirical Bayes. b) Di↵erence between inference

result and true variance: �2

r

� �̂2

r

. Yellow colors indicate underestimation of the variance

and blue colors indicate overestimation of the variance. c) Di↵erence between inference

result and true variance: �2

r

� e�2

r

. d-e) : Same plot as in b) and c), but for an average of

50 inference results

–
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Figure 5: Posterior realizations r̂⇤ (a-r) for prior models M0-M6 –
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Figure 6: Summary of sensitivity analysis in terms of D
KL

(top row), and logL (bottom

row). The sensitivity is shown for three parameters max(S) (a and d), S/N
cor

(b and e) and

size of neighbourhood n

�

d

(c and f). The results are displayed for the two heterogeneous

variance models: M1 (blue) and M2 (red), and the three homogeneous variance models: M3

(yellow), M4 (purple), and M5 (green). The BC value of each parameter are marked with

a stippled line

–
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Figure 7: a) Observed data (d): Nini inline 1283. b) Inferred variance estimate e�2

r

. –
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Figure 8: Posterior realization of Nini inline 1283. Results are shown for the two prior

models, MA (a,c and e) and MB (b,d and f).

–
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Figure D-1: Histograms of c-values obtained from a sample of using equation D-1. a) S/N

is equal to that of the BC (S/N
unc

= 20 and S/N
cor

= 3), b) High S/N (S/N
unc

= 30 and

S/N
cor

= 10), and c) Low S/N (S/N
unc

= 3 and S/N
cor

= 1)

–

44


	13925054
	Introduction
	Seismic Data
	AVO Seismic Data
	Probabilistic Inverse Problems
	Linear Inverse Problems
	Inversion of Seismic Data

	Forward models
	Full Waveform Modeling
	Convolutional Model
	Reflection Coefficients
	Processing

	Prior models
	Buland and Omre Prior Model
	Pluri-Gaussian Prior Model
	Prior Model for Full Waveform Modeling

	Noise models
	The Human Aspect
	Gaussian Data Uncertainty
	Correlated and Uncorrelated Noise

	Discussion
	Inversion Vs. Processing
	Modeling Errors
	Non-stationarity in Physical Parameters
	Inferring the Noise Model

	Conclusion
	References
	Appendices
	Snell's Law
	The Gaussian Distribution
	Momentum Equation
	The Stress Tensor
	Finite Difference Method
	Normal Moveout
	Hierarchical Models
	Scientific work
	Seismic forward modeling errors from linear approximations to Zoeppritz equations
	The interplay between geostatistical prior information and modeling error in seismic data
	On inferring the noise in probabilistic seismic AVO inversion using hierarchical Bayes
	Estimation and accounting for the modeling error in probabilistic linearized AVO inversion
	Accounting for processing errors in AVO/AVA data
	Prediction of acoustic impedance with non-stationary variance from seismic data



