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Abstract

An aquaplanet atmospheric general circulation model (GCM) coupled to a mixed

layer ocean is analyzed in terms of its polar amplified surface temperature response

to a 2×CO2-like steady forcing and in terms of the phase space trajectory of the

relaxation of a free perturbation to equilibrium. In earlier studies concerned with

linear stability analysis of the same system we have shown that the least stable

mode of the linearized surface budget operator has a polar amplified shape. We

demonstrate that this shape of the least stable mode is responsible for the polar

amplified shape of the response to a uniform forcing and for the manner in which

the system relaxes back to equilibrium. Based on GCM and simple energy balance

model results it is argued that the decay time-scale of this mode is determined by the

sensitivity of the net top-of-atmosphere radiation to surface temperature while its

shape (and thus the degree of polar amplification in a climate change experiment) is

determined by the sensitivity of poleward heat transports to low- and high-latitude

temperatures by the faster time-scale atmospheric dynamics. This implies that the

underlying mechanisms for the polar amplification may be obscured when studying

feedbacks during the slow evolution of climate change or considering only the new

equilibrium state after introduction of a steady forcing.

1 Introduction

When the climate cools or warms, high latitude regions tend to exaggerate the

changes seen at lower latitudes. This effect is called polar amplification and is seen in

model projections of future climate (e.g., ACIA, 2004; Holland and Bitz, 2003) and,

in fact, in the very earliest simple model of CO2-induced climate change (Arrhenius,

1896). Polar amplification is found in proxy-records of both deep past warm periods

(e.g., Zachos et al., 2001) and of the more recent cold glacials (e.g., Masson-Delmotte

et al., 2006).

The surface albedo feedback (SAF), by which a warming leads to snow and ice
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melt and thus greater absorption of solar energy, plays a role in producing polar am-

plified climate response and variability (e.g., Hall, 2004), and has therefore received

close attention in recent years (e.g., Qu and Hall, 2006; Hall and Qu, 2006). By

analyzing the output of twelve IPCC Fourth Assessment Report GCMs, however,

Winton (2006) has recently proposed that the SAF does not dominate the simu-

lated polar amplification; longwave effects appear to play an equally important role.

Even with the SAF excluded, several GCM studies (Schneider et al., 1999; Alex-

eev, 2003; Alexeev et al., 2005) have found feedbacks involving increased longwave

forcing on the high-latitude surface temperature sufficient to amplify high-latitude

temperatures to much the same degree as with the SAF included.

Alexeev et al. (2005) found that a low-latitude warming increases the poleward

atmospheric heat and moisture transport leading to a warmer and more moist high-

latitude atmosphere. This, in turn, warms the surface through increased longwave

forcing. This mechanism is in agreement with the recent findings of Solomon (2006)

whereby the coherence between developing storms and latent heat release contributes

significantly to polar warming through increased dynamical heat transports. Several

other investigators have noted the potential for low-latitude warming to influence

the high-latitude longwave forcing (Schneider et al., 1997; Rodgers et al., 2003),

although the idea of a low-latitude thermal forcing being felt at high-latititudes is

not new; the existence atmospheric teleconnection patterns has, for example, been

known for about 25 years (e.g., Wallace and Gutzler, 1981; Hoskins and Karoly,

1981).

Cai (2005, 2006) has investigated the interactions between increased dynamical

heat transports and the longwave radiation field in a box model of the surface and the

atmosphere. In this model, the climate system is represented by two surface boxes

and two atmospheric boxes, and an increase in atmospheric emissivity (greenhouse

forcing) is found to increase the meridional temperature gradient in the atmosphere

and thereby the heat transport. In agreement with the proposal of Alexeev et al.

(2005), this decreases the longwave forcing at low latitudes, increases it at high
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latitudes and eventually leads to polar amplification.

In a CO2-doubling experiment with the CCC GCM coupled to a mixed-layer

ocean, Boer (1995) found a polar amplified surface temperature response accom-

panied by a very modest change in total poleward atmospheric energy transport.

The small change was found to occur due to a cancellation between a decrease in

dry static energy transport and an increase in the latent heat transport due to in-

creased moisture supply from the warming low latitudes. A similar cancellation will

be shown to be at the heart of the findings in the present study. The importance of

increased latent heat transport relative to that of the SAF for high-latitude warm-

ing was noted already by Manabe and Wetherald (1980). This study also showed

that the climatic response to CO2 and solar constant changes have almost identical

meridional structures although the forcings are rather different. This will in the

framework of the present study be interpreted as an excitation of a certain mode

in the system. In Alexeev (2003) and Langen and Alexeev (2005) it was demon-

strated how the meridional structure of a climate response resembles that of the

least stable mode of the linear surface budget operator of the system. This idea will

be investigated further here; in particular, we will determine the physical meanings

of the slowest decaying (i.e., least stable) mode and faster decaying modes and the

parameters controlling their shapes and time-scales.

According to Alexeev (2003), Shine et al. (2003) and Hansen et al. (2006), an

adjusted troposphere-stratosphere forcing (holding surface temperatures or at least

SSTs constant) performs better than the typical stratosphere-only-adjusted forcing

in predicting the eventual surface temperature change resulting from a change in a

forcing agent. When changing an agent and letting the troposphere and stratosphere

equilibrate with fixed SSTs, the global-average imbalance (i.e., the forcing) will be

the same at all levels in the atmosphere. Its geographical distribution, however, will

depend on the level, and Alexeev (2003) demonstrated the surface-approach to be

efficient in characterizing the forcing-response relationship in the geographical sense

and not only the global-average sense. The linear theory employed in the following
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builds on an assumption of the local SST depending on the local surface budget de-

pending, in turn, on the global distribution of SSTs. The top-of-atmosphere (TOA)

budget does depend only (with the assumptions made here) on the distribution of

SSTs, but this budget does not as directly control the local SSTs. For this reason,

we have chosen to continue with the surface-approach rather than using the more

standard TOA approach.

In Section 2 we will present the experimental configuration of the GCM employed

in the study and review the linear framework for interpreting the GCM’s dynamics.

Section 3 describes a two-box energy balance model designed to clearly express the

physics of the system’s modes and their time-scales. In Section 4 these findings are

compared with the behavior of the GCM in an ensemble run and conclusions are

offered in Section 5.

2 Linear dynamics of a simplified GCM

In previous papers (Alexeev, 2003; Langen and Alexeev, 2005) we have described

several ways of determining a linearized surface budget operator of a climate system

model. For the sake of completeness, and since this is essential to the present paper,

we will here review the ideas of the linearized surface budget. Firstly, however, we

will describe the simplified GCM configuration used in the experiments throughout

this study.

2.1 Experimental configuration

In this study we use the National Center for Atmospheric Research’s CCM3 atmo-

spheric general circulation model (Kiehl et al., 1996) in a special simplified con-

figuration. The model has 18 vertical levels and we employ a horizontal spectral

resolution of T21. Continents have been removed from the model geography leaving

us with a so-called aquaplanet, and sea ice effects have been excluded by treating

sub-freezing grid points as open water in the model code. A 50 m deep mixed
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layer ocean model (or slab ocean) with a weak, specified deep ocean heat flux con-

vergence (“q-flux“, as described by Langen and Alexeev (2004)) acts as the lower

boundary condition for the atmospheric model. By employing what we call modified

equinox forcing (Alexeev, 2003), whereby an annual average diurnal cycle provides

the same solar forcing every model day, we have removed the seasonal cycle. The

solar constant and the CO2 concentration are specified at 1367 Wm−2 and 355 ppm,

respectively. The surface albedo is uniform and fixed (at 11%) and has been tuned

along with the strength of the specified q-flux to produce a global mean tempera-

ture and equator-to-pole temperature gradient similar to those of the present day

climate.

These simplifications render the model climate particularly well suited for the ide-

alized investigations carried out here. The statistics of the climate have no seasonal

cycle (symmetry in time), no standing waves (zonal symmetry) and no differences

between the hemispheres (hemispherical symmetry). Due to these properties we will

mainly concern ourselves with zonally averaged quantities throughout the study.

2.2 Linearized surface budget

The temperature of the oceanic mixed layer is in the model code governed by the

budget of the surface fluxes,

ρwcwH
∂TS

∂t
= FS − FL − FSH − FLH + Q, (1)

where FS is the net downwelling shortwave flux, FL is the net upwelling longwave

flux, and FSH and FLH are the net upwelling fluxes of sensible and latent heat. The

heat capacity per unit area of the mixed layer is given by the product of the density

of sea water, ρw, the specific heat capacity, cw, and the depth, H, and will in the

following be written simply as c. Q resembles the contribution to the budget from

the oceanic heat flux convergence, but since this quantity is kept fixed throughout

the experiments, it drops out once we consider linearizations about an equilibrium.
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Note that the temperature and the fluxes are written in a bold font to signify that

they are vectors; in principle they could be vectors of all the points on the surface

of the globe, but here we will think of them just as vectors of the zonal average

quantities. During model integration, however, eqn. (1) holds locally. This differs

from the integrations by Alexeev (2003) where the SSTs at each time-step were

constrained to be zonally symmetric.

With our 50 m mixed-layer depth, the typical time-scale for atmospheric response

is significantly shorter than that for the ocean, and the atmospheric time-scale can

be regarded as negligible compared to the longer oceanic time-scales. Since the

atmosphere is chiefly heated from below, the atmospheric state averaged over the

short atmospheric time-scales will be given by the state of the ocean. Even in a

situation where the ocean is not in equilibrium with its surface fluxes, the atmosphere

will spin up to match this state such that (on the short time average) the fluxes in

and out of the bottom and top of the atmosphere balance. The atmosphere can thus

be regarded as being in quasi-equilibrium with the SSTs and we will assume that

to a given state of the SST field corresponds a given mean state of the atmosphere

and a given set of surface fluxes. In the following analysis we will thus approximate

eqn. (1) by

ṪS ' c−1 BSrf (TS ,Λ), (2)

where BSrf is the net surface flux and Λ is a collection of parameters, such as the

CO2 concentration and the solar constant, external to the system, in the sense that

they are not influenced by the state of the system. The quantities TS and BSrf

should be thought of as averages over the short time-scales (say, 50–100 days) that

allow us to regard the atmosphere as being determined by the state of the SSTs.

BSrf will thus be assumed to depend only on the SSTs and the external parameters.

Integration of the GCM from random initial conditions (not shown) indicates

that the dynamical system described by eqn. (2) is stable: after an initial transient,

the system eventually fluctuates around an equilibrium state. Letting overbars de-
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note time-averages on the long oceanic time-scale and performing this operation on

eqn. (2), we get

˙̄TS = c−1 BSrf (T̄S ,Λ) ' 0 (3)

since the system otherwise would drift away from the equilibrium. Expanding

eqn. (2) to first order in T′
S = TS − T̄S we get

Ṫ′
S = c−1 BSrf (T̄S + T′

S ,Λ) ' c−1 R(T̄S) T′
S , (4)

where R is the Jacobian of the surface budget with respect to the SSTs (evaluated

at equilibrium),

R(T̄S) =
DBSrf (TS ,Λ)

DTS

∣∣∣∣
TS=T̄S

. (5)

The eigenvalues and eigenvectors of the matrix of a linear dynamical system such

as eqn. (4) provide full information about the system in terms of decay of free

perturbations and responses to steady forcings. As will be demonstrated in the

following, especially the eigenvector of R associated with the smallest eigenvalue

(in terms of magnitude), i.e., the least stable mode, is worth closer examination.

2.3 Decay of free perturbations

Since the above equilibrium is stable in both the GCM and its linearized approxima-

tion, eqn. (4), the real parts of all the eigenvalues of R are negative and the manner

in which the system removes a perturbation in the surface temperature field can be

seen from the solution of eqn. (4),

T′
S(t) = k1v1e

λ1t + . . . + kNvNeλN t, (6)

where the λ’s are the eigenvalues and the k’s give the initial perturbation in the basis

of the eigenvectors. With negative real parts of the eigenvalues, all the terms in the

expansion will decay exponentially (with an e-folding time of −1/Re(λ)). When all
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but the slowest decaying term in the expansion have decayed, the final approach of

the system toward equilibrium is along the least stable mode (LSM).

The degree to which the LSM will stand out during the final approach to equi-

librium is determined by the separation in time-scales of the LSM from the other

modes. In previous papers we have employed different ways of evaluating R; in Alex-

eev (2003) a perturbation method was used and in Langen and Alexeev (2005) the

statistics of an unforced control run were exploited using the fluctuation-dissipation

theorem (FDT). In both cases, the smallest eigenvalue corresponded to a time-scale

about 5 times longer than that of the second smallest. The LSM associated with

this eigenvalue was for both methods a typical polar amplified pattern and with

the GCM used in the present study, the perturbation method yields a time-scale of

125 months (and 55 months with a different GCM, Alexeev, 2003) while the FDT

method gives 90 months. Hence, if we pull the system away from equilibrium and

let it relax freely, it will, after the faster modes have decayed, approach equilibrium

along a direction in phase space corresponding to the polar amplified pattern. This

will be demonstrated to be the case in Section 4.

2.4 Response to steady forcing

A different experiment is one where we apply a steady forcing to the surface budget.

This could for example be due to a doubling of CO2 or a change in the solar constant,

but here we will write it formally as Λ → Λ + δΛ. This change in the external

parameters leads to a change in the surface forcing of

δb ' ∂BSrf (T̄S ,Λ)
∂Λ

δΛ, (7)

averaged over the short atmospheric time-scale without oceanic response. After an

equilibration period, the system will eventually come close to a new equilibrium,
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T̄S + δTS , in which

BSrf (T̄S + δTS ,Λ + δΛ) ' RδTS + δb. (8)

Since we are in a new equilibrium, this surface budget will vanish and we can solve

for the surface temperature change

δTS = −R−1δb. (9)

Hence, if we evaluate the Jacobian (e.g., as in Alexeev, 2003; Langen and Alexeev,

2005), we will be able to calculate the linear estimate of the climate change arising

from any surface forcing. Moreover, in the case where we have real eigenvalues and

a complete set of eigenvectors, we may expand the forcing in the basis of these

eigenvectors to get (Alexeev, 2003),

δT = −R−1δb = −R−1
∑

i

bivi

= −
∑

i

biR−1vi =︸︷︷︸
1

−
∑

i

bi

λi
vi

'︸︷︷︸
2

− bl

λl
vl, (10)

where the b’s are the projection coefficients of the forcing onto the eigenvectors.

Here, equality 1 is due to the eigenvectors of R also being eigenvectors of R−1 and

the approximate equality 2 holds if the l’th term dominates the expansion. This is

the case if the forcing projects similarly onto the eigenvectors and the l’th eigenvalue

is much smaller than the others, i.e., if the LSM is well separated from the other

modes. If this is satisfied, we have found that the shape of climate change is given

by the shape of the least stable mode. This can, in fact, be shown also to hold in

the case of complex eigenvalues if one mode has |λ| smaller and well separated from

the others.

Hence, if the forcing projects significantly onto the least stable mode, the climate
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Figure 1: Sketch of the two-box EBM. The ocean mixed layer has in both boxes a
depth of H, density ρ, and specific heat capacity cw. The surface (and mixed layer)
temperatures in the boxes are T1 and T2 and the net downwelling shortwave radiations
are S1 and S2. The outgoing longwave radiations are parameterized as A + BTi and the
heat transport from box 1 to box 2 is F .

change will be given as an excitation of this mode. The LSM thus plays a central

role in the system’s dynamics: Relaxing towards equilibrium it quickly settles onto

the LSM and if we pull the system away from equilibrium using a steady forcing

pointing almost any direction in phase-space the system will stubbornly respond

along its preferred direction.

3 A two-box energy balance model

Having established the shape and time-scale of the least stable mode as being central

for the behavior of the climate system, it becomes interesting to determine the

physical mechanisms behind these quantities. To this end, we construct a simple

two-box energy balance model (EBM) containing the necessary processes to display

a behavior similar to that of the GCM. This model may be dealt with analytically

and the parameters determining that behavior may be identified.

3.1 Model description

The model consists of a single hemisphere with two boxes divided by the 30th

latitude. This choice yields similar surface areas of the two boxes and when choosing
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equal mixed layer depths the heat capacity of the low- and high-latitude oceans are

also equal. Figure 1 provides a sketch of the model: Each box is characterized

by a surface (mixed layer) temperature which is influenced by the net downwelling

shortwave radiation at the top-of-atmosphere (TOA), Si, the outgoing longwave

radiation (OLR) and the meridional heat transport. The OLR is parameterized in

the usual Budyko-Sellers (e.g., Budyko, 1969; Sellers, 1969; North, 1975) fashion as,

A + BTi, where B gives the sensitivity of the OLR to surface temperature changes

and A is a tunable parameter. For reasons that will be discussed in depth later, a

value of B = 0.1PW/K is chosen (PW is 1015W ). This corresponds to the rather

low TOA sensitivity of about 0.8 Wm−2K−1 in the units typically used for B.

Albedo variations are neglected and the shortwave fluxes are thus kept constant.

The tendency on the surface temperatures are given as the residual of the above

fluxes:

Ṫ1 =
1

πa2ρcwH
(S1 −A−BT1 − F ) (11)

Ṫ2 =
1

πa2ρcwH
(S2 −A−BT2 + F ), (12)

where a is the radius of the Earth and πa2 thus yields half the area of a hemisphere.

Values of S1, S2, and A are tuned to give the specified equilibrium (T̄1, T̄2) =

(298, 278)K, and we consider only deviations from this equilibrium, T ′
i = Ti−T̄i. The

meridional heat transport, F , is parameterized linearly in terms of the meridional

temperature gradient and the low-latitude temperature:

F = F̄ + (T ′
1 − T ′

2)γ1 + T ′
1γ2. (13)

The first term is the equilibrium transport, which is tuned along with S1, S2, and

A. The second term proportional to the temperature gradient is to mimic the in-

crease in transport with increasing baroclinicity and is the one normally included in

EBMs. The last term proportional only to T ′
1 is included to mimic the effect of an
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increased moisture supply and thus greater latent heat transport with increased low-

to mid-latitude temperatures. In Figure 10(c) in Alexeev et al. (2005), we showed

the resulting meridional heat transport changes from three different fixed SST ex-

periments with the aquaplanet CCM3: a 1 K low-latitude temperature increase

relative to equilibrium, a 1 K high-latitude increase and a global 1 K increase. The

maximum change in the three experiments was approximately 0.3, −0.15 and 0.15

PW and we have accordingly chosen the sensitivities1

γ1 = γ2 = 0.15PW/K, (14)

as the basic parameter setting in the following. In the three Alexeev et al. (2005)

fixed SST experiments we thus get

low: T ′
1 − T ′

2 = 1K, T ′
1 = 1K F ′ = 2(1K · 0.15PW/K) = 0.3PW

high: T ′
1 − T ′

2 = −1K, T ′
1 = 0K F ′ = −1K · 0.15PW/K = −0.15PW

glob: T ′
1 − T ′

2 = 0K, T ′
1 = 1K F ′ = 1K · 0.15PW/K = 0.15PW.

With these parameterizations the system can be written in matrix form as

 Ṫ ′
1

Ṫ ′
2

 =
1
C

 −B − γ1 − γ2 γ1

γ1 + γ2 −B − γ1


 T ′

1

T ′
2

 (15)

where C = πa2ρcwH is the heat capacity of each of the boxes. Since γ1, γ2 and B

are all positive, both diagonal entries in the Jacobian are negative and thus tend

to remove perturbations. The off-diagonal entries are both positive and tend to

communicate a perturbation from one box to the other.

The parameterization, eqn. (13), for the meridional energy transport is obviously

1These are round numbers only. The changes in the low-latitude, high-latitude and uniform SST
change experiments could also be read off as 0.3, -0.2 and 0.1 PW , respectively. In that case we would
arrive at (γ1, γ2) = (0.2, 0.1)PW/K. Since this has no impact on the qualitative conclusions reached in
the following, we have chosen to use the parameter setting where the γ’s are equal.
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only one out of several possibilities. For the last term in the parameterization in

eqn. (13) one might have chosen the global mean temperature rather than simply

the low-latitude temperature, and we have done this without showing the result.

The values of the parameters γ1 and γ2 change and the algebra in what follows

is slightly different, but the qualitative conclusions remain unchanged. We have

chosen the low-latitude temperature both because this is physically more important

for the atmospheric moisture supply and because the algebra is especially simple

with this choice. Another parameterization which perhaps is more physically based

and consistent with the results of Caballero and Langen (2005) would be one where

the extra low-latitude contribution is scaled with the temperature gradient, since it

is the same baroclinic eddy motions that are responsible for both contributions:

F = (T1 − T2)γ1 + (T1 − T2)γ1T1γ2 = (T1 − T2)γ1(1 + γ2T1).

However, when we linearize about the model’s equilibrium (since we are here con-

cerned with small perturbations), this yields the perturbation transport

F ′ = [γ1(1 + γ2T̄1) + γ1γ2(T̄1 − T̄2)]T ′
1 − [γ1(1 + γ2T̄1)]T ′

2,

and we are left in a situation where γ2 6= 0 leads to an added positive sensitivity

to T ′
1 relative to the negative sensitivity to T ′

2. This added sensitivity is equivalent

to γ2 6= 0 in eqn. (13), and is what in the following will be demonstrated to play

the decisive role for polar amplification. When linearized, the different possible

parameterizations taking the moisture supply effect into account are thus equivalent.

The latter non-linear parameterization would, however, change the model’s behavior

were the linearization dropped and larger perturbations considered.
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3.2 Eigenmode analysis

As for the Jacobian, R, of the GCM earlier, we determine the eigenmodes of the

EBM. The fast mode (subscript ”f”) has the eigenvalue

λf = −B + 2γ1 + γ2

C
(16)

corresponding to the decay time-scale

τf =
C

B + 2γ1 + γ2
(17)

and the eigenvector

vf =

 1

−1

 . (18)

The slow mode (subscript ”s”) mode – or least stable mode – is

λs = −B

C
, τs =

C

B
(19)

vs =

 1

1 + γ2
γ1

 . (20)

The fast mode is with its (1,−1) structure one of redistribution of energy between the

boxes. Motion in phase space along this vector is simply an increase in temperature

in one zone and an equal decrease in the other. The slow mode has the same sign

in both zones and therefore corresponds to either global cooling or warming. Its

shape is, when γ1 and γ2 are approximately equal, polar amplified with a high- to

low-latitude ratio of about 2 (and 1.5 if (γ1, γ2) = (0.2, 0.1)PW/K). The time-scale

of the LSM is set by C and B, i.e., by the heat capacity of the system and by

the rate at which extra energy can be lost to space. In the standard parameter

setting, where B = 0.1PW/K, the time-scale is approximately 100 months. This is

the time-scale we find from the GCM relaxation experiment in Section 4 and lies
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sτ=τ

b

a

c

Figure 2: A box model relaxation experiment from an initial 3 K perturbation in both
zones. (a) Temperature perturbation in box 1 (solid) and 2 (dashed). (b) As panel (a)
but with logarithmic temperature axis. The straight lines that the curves converge to
have a slope corresponding to the decay time-scale of the least stable mode. (c) The
total heat transport perturbation (solid) broken down into contributions from (T ′

1−T ′
2)γ1

(dashed) and T ′
1γ2 (dotted).

between the two different GCM times-scales evaluated with the perturbation and

FDT methods (Alexeev, 2003; Langen and Alexeev, 2005).

The separation in time-scales of the two modes is determined by the magnitude

of B compared to the γ’s; in the standard parameter setting where the γ’s are

0.15PW/K, the slow time-scale is 5.5 times longer than the fast one (and 6 times

longer if (γ1, γ2) = (0.2, 0.1)PW/K). If B = γ1 = γ2, the separation is 4 times and

if B was chosen corresponding to the normal 2 Wm−2K−1, the separation would

be approximately 3.

3.3 Relaxation to equilibrium

In Figure 2 is shown the result of letting the system relax back to equilibrium from

a globally uniform 3 K initial perturbation. Panel (a) shows how the system spends
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the first 5 years setting up the LSM polar amplified shape under the influence of the

fast mode. In panel (b) it is obvious from the straight lines in the semi-logarithmic

plot how the decay thereafter is exponential with decay time-scale τs in both zones.

At this point, the trajectory is described by the LSM term in the expansion of

eqn. (6):

T′
s(t) ∼ vse

λst. (21)

It is apparent from eqn. (20) that with positive γ’s the least stable mode will

always be polar amplified to some degree, which in turn is set by the ratio of the

γ’s. When the system is dominated by the least stable mode, T ′
2 = (1 + γ2/γ1)T ′

1

and the perturbation in the heat transport vanishes:

F ′ = (T ′
1 − T ′

2)γ1 + T ′
1γ2 = (1− (1 + γ2/γ1))γ1T

′
1 + γ2T

′
1

= 0. (22)

This is clearly seen in Figure 2(c) where, after the decay of the fast mode, the

two terms contributing to the heat transport exactly cancel out to remove the heat

transport perturbation long before the temperature perturbation is damped out.

This does, however, not fully explain the least stable mode in physical terms. Such

an explanation becomes more apparent when the system is rewritten in terms of

the temperature gradient, ∆T = T1 − T2, and the global mean temperature, Tm =

(T1 + T2)/2:

 ∆Ṫ ′

Ṫ ′
m

 =
1
C

 −(B + 2γ1 + γ2) −2γ2

0 −B


 ∆T ′

T ′
m

 . (23)

Here we realize that the state of the gradient has no effect on the evolution of the

global mean temperature but that a positive perturbation in the mean temperature

tends to decrease the gradient by increasing the heat transport. The above may be
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split into two terms,

 ∆Ṫ ′

Ṫ ′
m

 = −B

C

 ∆T ′

T ′
m


︸ ︷︷ ︸

Slow decay

+
1
C

 −(2γ1 + γ2) −2γ2

0 0


 ∆T ′

T ′
m


︸ ︷︷ ︸

Fast adjustment of ∆T ′

, (24)

from which it is obvious that the decay is composed of a fast adjustment of the

gradient superimposed on a slower decay of both the gradient and the mean tem-

perature controlled by the OLR sensitivity, B. Existence of a positive perturbation

in the mean temperature leads to a negative tendency on the gradient due to the

latent heat flux term (γ2). Conversely, a negative perturbation in the gradient leads

to a positive tendency. When the gradient is small, the former dominates, and when

it is large the latter dominates. Consequently, the system will quickly approach a

state where these tendencies cancel,

∆T ∼ − 2γ2

2γ1 + γ2
Tm, (25)

and this is exactly the LSM in this representation of the system. Hence, while

the global mean temperature decays exponentially from the very beginning of the

experiment, the fast mode (redistributing energy between the boxes) quickly adjusts

the gradient to match the current mean temperature such that the heat transport

perturbation vanishes.

3.4 Response to steady forcing

To determine what happens in a climate change experiment rather than just a

relaxation experiment, we return to eqn. (15). We simply insert a steady forcing on

the right hand side as an extra contribution to the tendency which in turn is set
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equal to zero to achieve the new equilibrium:

1
C

 −B − γ1 − γ2 γ1

γ1 + γ2 −B − γ1


 δT1

δT2

 +

 δb

δb

 = 0, (26)

where the δT ’s are the climate change resulting from the forcing, δb. This solves to

 δT1

δT2

 =
δb

B(B + 2γ1 + γ2)

 B + 2γ1

B + 2γ1 + 2γ2

 . (27)

The global mean climate change is simply δb/B and thus independent of the heat

transport parameters. This parallels the relaxation experiment where global mean

temperature was only influenced by B. The ratio between high- and low-latitude

warming is

δT2

δT1
=

(
1 +

γ2

γ1

)
− γ2B

γ1B + 2γ2
1

(28)

where the second term becomes negligible if B is much smaller than the γ’s, cor-

responding to a large separation in time-scales. As demonstrated in eqn. (10), the

climate change thus tends to the shape of the LSM as the separation in time-scales

increases. In the “dry-atmosphere” case where γ2 vanishes, a climate change along

the LSM is in this model thus uniform between low and high latitudes. This con-

trasts the results of Cai (2006) who found polar amplification in a box model even

without latent heat transports. In that model, atmospheric and surface tempera-

tures are modeled separately and the heat transport is parameterized in terms of

the atmospheric temperatures rather than the surface temperatures as done here. A

uniform change in the atmospheric emissivity leads in Cai’s model to an increased

atmospheric equator-to-pole gradient accompanied by an increase in the poleward

heat transport and a reduced surface temperature gradient.
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4 GCM results

To assess whether the behavior of our EBM carries over to the GCM, we have

performed a similar relaxation experiment. It turns out, however, that one single

realization of the experiment is too noisy to determine decay rates, TOA fluxes

and heat transports sufficiently well. We therefore used a 20 member ensemble of

runs with only slightly different initial conditions: In each surface point we added

a perturbation relative to the equilibrium SST taken from a Gaussian distribution

with mean 3 K and standard deviation 0.15 K. Figure 3(a) shows the result of

this experiment: The thin black curves show the individual ensemble member high-

and low-latitude temperatures (upper cluster is high-latitude, lower cluster is low-

latitude) while the thick white curves show the ensemble means. For each ensemble

member (and thus also the ensemble mean), averages have been taken between the

two hemispheres. Panel (b) shows the same curves in a semi-logarithmic plot.

4.1 Time scales

Firstly, we compare panels (a) and (b) of Figures 2 and 3. In both cases, the low-

latitude temperature drops off rapidly with the high-latitude temperature decaying

more slowly. The straight lines in panel (b) of the EBM case carry over reasonably

to the GCM case. Especially the high-latitude temperature seems to cool off ex-

ponentially, while the low-latitude cooling is somewhat more noisy. It does seem,

however, that after the initial 5 to 10 years, the two curves follow straight lines with

similar slopes.

To check this in detail, we show in Figure 3(c) the 2-year running mean of the

slope of the white curves in panel (b). In the ideal case (like the EBM) these slopes

should after the decay of all but the slowest mode be constant and equal to the decay

rate of the LSM, i.e., equal to the eigenvalue of the LSM. The slope is very nicely

constant and equal to the value −0.01 month−1 (corresponding to τs = 100 months)

for the high-latitude temperature. The slope of the low-latitude temperature is less
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Longwave

Clear sky

Total

Shortwave

Figure 3: Results of a 20 member GCM ensemble relaxation experiment with an initial
3 K global temperature perturbation. Results for each member have been averaged
between the hemispheres. (a) Individual tropical (equatorward of 30 latitude) and extra-
tropical (poleward of 30 latitude) ensemble member temperatures (black) and ensemble
average tropical (solid white) and extra-tropical (dashed white) temperature. (b) As in
panel (a) but with logarithmic temperature axis. (c) Running 2-year average of slope of
ensemble average tropical (solid) and extra-tropical (dashed) temperature curves in panel
(b). (d) Ensemble and global average TOA change in net upward radiation divided by
global average surface temperature change (solid), and longwave (dashed) and shortwave
(dotted) contributions thereto. The thick solid line is a running 2-year average. Also
shown is the total clear sky counterpart (dash-dotted).
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constant (as is also apparent in panel (b)), but it does fluctuate around the value

−0.01 month−1. We therefore conclude that, after the decay of faster modes, the

system does, in fact, cool off exponentially with the same time-scale in all zones,

namely that of the LSM. The 100 month time-scale is reasonably close to the 90

months found in Langen and Alexeev (2005) and the 125 months found when the

perturbation method of Alexeev (2003) is used on the present model. The shape of

the LSM is from these plots clearly one of higher temperatures at high latitudes.

The time-scale of the LSM was for the EBM found to be determined by the

sensitivity of the OLR to surface temperature changes, B. In other words, the

slowest decay was concluded to be set by the system’s ability to communicate a

perturbation to space. Since albedo was held fixed in the EBM, only the longwave

sensitivity influenced this communication. In the GCM, however, clouds and water

vapor content can change and the shortwave sensitivity must also be taken into

account. Furthermore, considering the TOA sensitivity along with SST decay rates

is warranted under the assumptions made in the derivation of the linear theory, since,

on global average, the imbalance is independent of level when the atmosphere is in

equilibrium with the current state of the surface (on time-scales longer than that of

the atmosphere). Figure 3(d) thus displays the global average net upward radiation

change divided by the global average SST change (solid line). The thick solid line

shows a running 2-year average, while the dashed and dotted lines show the long-

and shortwave contributions, respectively. After the faster modes have decayed, the

total flux sensitivity is rather constant at a value of about 0.8 Wm−2K−1 which

comes about as the sum of about 1.3 and −0.5 Wm−2K−1 from the long- and

shortwave. This value of 0.8 Wm−2K−1 yields exactly the decay time-scale of 100

months.

We chose the same value for the EBM although it is quite a bit lower than

the typical value of about 2 Wm−2K−1 used in EBMs. This was mainly done to

have time-scales in the EBM closer to those in the GCM. The key point is that in

both the EBM and the GCM the final decay rate of the system is controlled by the
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TOA radiation sensitivity. In our case, this decay is delayed somewhat compared to

typical EBMs and the dash-dotted curve in Figure 3(d) gives us a hint as to why:

The clear-sky sensitivity, evaluated in the model by an offline pass to the radiation

code ignoring effects of clouds, is much closer to 2 Wm−2K−1. Hence, clouds have

a warming effect when the system is dominated by the LSM and thus tend to delay

the relaxation. We will return to this cloud effect in the next subsection.

Figure 4: Ensemble average maximum heat transport change during the GCM relax-
ation experiments (solid) and the maximum dry static energy (dashed) and latent heat
(dotted) transport changes.

Figure 4 shows the evolution of the maximum poleward atmospheric heat trans-

ports during the experiment. The solid line is the maximum total transport, while

the dotted and dashed lines are the maximum latent and dry static energy transport

changes. As in the EBM (see Figure 2(c)), the total transport adjusts rapidly during

the decay of the faster modes. This happens as a result of both a decrease in the

latent heat transport and in the dry static energy transport (due to the low-latitude

cooling and decrease in temperature gradient). Unlike in the EBM, the total trans-

port change does not vanish once the system reaches the LSM. Rather, a negative

change is observed. This has to do with the changes in the cloud radiative forcing
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that also worked to slow down the decay: as will be demonstrated in the next sub-

section, the cloud radiative forcing is negative at low latitudes and positive at high

latitudes. This corresponds to a positive poleward heat transport which must be

canceled out by a negative actual heat transport.

4.2 The least stable mode

a

b

Figure 5: (a) Ensemble and zonal average surface temperature perturbation during
relaxation experiment. (b) Least stable mode of the model climate system as evaluated
from the latter 10 years of the relaxation experiment.

In this section we will demonstrate a way of evaluating the shape of the LSM from

the relaxation experiment. We will also use the method to determine the associated

changes in other climate fields. Figure 5(a) shows the ensemble and zonal average
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surface temperatures during the relaxation experiment. Initially, the high-latitudes

warm while the low latitudes cool. Eventually the system reaches the shape of the

least stable mode and the figure displays the characteristic horse-shoe pattern. As

mentioned earlier, when the faster modes have decayed, the remaining temperature

perturbation is given by

T′
s(t) ∼ vse

λst. (29)

This can be solved for the LSM,

vs ∼ T′
s(t)e

−λst, (30)

and we can average over the latter part of our experiment,

vs = 〈T′
s(t)e

−λst〉t=10−20yr, (31)

to extract the shape of the LSM. An eigenvector is only defined to within an arbitrary

constant, and with this technique we get the projection of the initial state onto the

vector. Figure 5(b) shows the LSM as calculated in this manner, and the shape (and

magnitude) is very robust to the choice of averaging period. This LSM is very similar

to those found by evaluating R in eqn. (5) with a perturbation method (Alexeev,

2003) and with the fluctuation-dissipation theorem (Langen and Alexeev, 2005).

This technique can, however, be utilized to evaluate not only the LSM in the surface

temperature, but also changes in other fields associated therewith. Assuming that,

with the rather small climate changes dealt with here, cloud and radiation fields are

related linearly with surface temperature changes (basically the same assumption

as in Section 2.2), we can rewrite eqn. (31) using, for example, the 2 dimensional

(zonally averaged) cloud fraction field,

Cs = 〈C′
s(t)e

−λst〉t=10−20yr. (32)
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The result of this calculation is shown in Figure 6(a), where solid contours mark

positive changes and dashed contours mark negative changes. Surface temperature

changes along the least stable mode lead – in this model – to a decrease and upward

shift of the equatorial high clouds, while in mid- to high latitudes we see a decrease

in low to medium clouds and a slight increase in high clouds.

These changes in the mean cloud field, and possibly also changes in the cloud

variability and cloud water, lead to changes in the TOA radiative fluxes that are most

easily expressed with the cloud radiative forcing (CRF). The CRF is the difference

between the actual (all-sky including clouds) radiation and the clear-sky radiation

and can be evaluated both at the surface and the TOA. We calculate the TOA CRF

for longwave, shortwave and total flux according to

CRFSW = F ↓
SW − F ↓

SW,clear

CRFLW = F ↓
LW − F ↓

LW,clear

CRF = CRFSW + CRFLW,

and use these quantities in calculations parallel to those of eqs. (31) and (32). The

result is shown in Figure 6(b) where the solid curve is the total TOA CRF change

associated with climate changes along the LSM. The dashed and dotted lines are

the long- and shortwave components. Most striking is the positive CRF at mid- to

high latitudes which is due to both long- and shortwave contributions. While it is

outside the scope of the present study to determine exactly how the CRF is formed,

we might tentatively ascribe the former to the increase in high clouds and the latter

to the decrease in low to medium clouds (again, cloud water and variability changes

may also play a role). At the equator, the decrease in high cloud seemingly leads to

a decrease in the longwave CRF.

These CRF changes relate directly to two issues discussed earlier: (i) The overall

positive CRF is responsible for delaying the relaxation in the GCM by decreasing

the radiative sensitivity to 0.8 Wm−2K−1 (cf. Figure 3(d)). In fact, the global
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b
Total

LW

SW

Figure 6: Ensemble and zonal average cloud quantity changes associated with surface
temperature perturbations along the least stable mode. Evaluated in same manner as
least stable mode in Figure 5(b). (a) Cloud fraction. Dashed contours signify negative
changes. Grey shading marks areas where changes are significant at the 95% level
estimated using the t-test on the 20 ensemble members. The changes in the members
are assumed independent and Gaussian. (b) Total TOA cloud radiative forcing change
(solid), and longwave (dashed), shortwave (dotted) contributions thereto.
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average of the total CRF change divided by the global average of the LSM equals

approximately 1 Wm−2K−1, which added to the all-sky sensitivity would bring

us close to the typical EBM value of 2 Wm−2K−1. Since CRF changes are not

equivalent to cloud feedback (Soden et al., 2004), this should not, however, be

seen as an attempt to estimate feedback. It is rather an identification of the cloud

contribution to TOA radiation change when the system is governed by the LSM.

However, due to the inherent differences between the model types, we should not

expect to be able to completely reconcile the sensitivities of the GCM and the EBM.

For instance, many feedbacks (such as the lapse rate feedback) alter the geographical

distribution of sensitivity (Colman, 2002) and may thus influence global sensitivity.

(ii) As discussed by Weaver (2003), there is a close relationship between the gradient

of CRF and atmospheric and oceanic energy transports. In the present case, the

pattern of negative change at low latitudes and positive change at high latitudes

has the same effect on the TOA radiation imbalance as a positive atmospheric heat

transport. This yields a positive tendency on ∆T and, according to the discussion

following eqn. (24), the temperature profile must adjust such as to balance the two

heat transport contributions and the positive cloud contribution. This leads to the

negative heat transport change in Figure 4.

5 Conclusions

Through a combination of theoretical considerations related to the climate system’s

linearized surface budget, a simple EBM and an ensemble experiment with a GCM,

we have explored the notion of polar amplification being an excitation of the cli-

mate system’s least stable mode. When the system is perturbed, it relaxes back

to equilibrium along the least stable mode. Prior to this, faster modes act to re-

distribute heat within the system to set up the characteristic polar amplified shape

of the least stable mode. On the least stable mode, the meridional temperature

gradient is exactly such as to counter the increase in atmospheric heat transport set
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up by the low-latitude temperature perturbation (and in the GCM case, the heat

transport implied by cloud radiative forcing changes). From the EBM analysis it

became apparent that this was necessary due to the heat transport processes being

faster than the final decay.

The fast time-scale is thus one of redistribution of energy in the system while the

slowest is one of energy-loss to space. In fact, the degree to which the LSM becomes

visible during the decay is determined by the separation between these time-scales:

a fast redistribution of heat will quickly collapse the system onto the LSM while a

small separation will allow non-LSM components to survive. In a climate change

experiment, where the system responds to a steady forcing, the time-scale separation

also determines how cleanly the LSM is excited.

It is worth stressing that the shape of the LSM is set by the fast atmospheric

dynamics and studies considering an equilibrium response or the slow evolution

accompanying a gradual increase in forcing may overlook the underlying mechanisms

for the polar amplification. This agrees well with the recent work of Graversen

(2006) who found only a small part of the observed recent polar amplified warming

trend to be associated with increase in poleward atmospheric heat transport. It is

also consistent with the near cancellation in the new equilibrium between dry static

energy and latent heat transport changes found in the CO2-doubling experiment by

Boer (1995).

The decay time-scale of the LSM, and thereby also the time-scale for removal of

a perturbation to the system, is rather intuitively determined by the rate at which

energy can be lost to space. Within the EBM framework, it is not influenced by

the heat transport parameters, which only set the shape of the LSM. In the GCM,

however, there is the caveat that cloud effects were found to delay the communication

with space relative to the clear-sky and classical EBM value. Assuming that these

cloud effects are affected by the shape of the LSM, which in turn is affected by the

heat transport, the decay time-scale is in the GCM indirectly influenced by the heat

transport sensitivity.
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The shape of the LSM is determined by the ratio of heat transport sensitivity

to low-latitude temperature changes and gradient changes (cf. eqn. (20)). If γ2

vanishes, the least stable mode would no longer be polar amplified but rather just

a constant vector. Climate changes along this mode are thus more uniform with

similar changes in low and high latitudes. Caballero and Langen (2005) found a

warm low-gradient regime ((∆T, Tm) ' (20, 20)◦C) to exist in which the total at-

mospheric heat transport no longer depends on global mean temperature changes

but only on gradient changes. If true, this would imply that climate changes during,

for example, the Eocene would be more uniform than polar amplified. This conclu-

sion is particularly interesting in light of the recent findings of Sluijs et al. (2006)

where a Palaeogene polar marine sedimentary core from hole 302-4A of the Inte-

grated Ocean Drilling Program is analyzed. They find that the Palaeocene/Eocene

thermal maximum – a warm event during the warm, low-gradient early Palaeogene

background climate – experienced warming near the North Pole of about 5◦C. This

is not polar amplified relative to the approximately 4–8◦C warming documented at

low to mid-latitudes.

The present study is a continuation of our earlier work, and we have studied the

relationship between the relaxation of perturbations, the LSM and polar amplifica-

tion. The success of the perturbation method (Alexeev, 2003) and the FDT method

(Langen and Alexeev, 2005) in predicting the response to an external forcing shows

that the linear theory employed here is valid – at least for small perturbations and

forcings: when other climate regimes are considered as above, the Jacobian of the

system must be re-evaluated. With the exponential decay of temperature pertur-

bations seen in Figure 3, we thus find the projection of the GCM response onto

this decay a reasonable way to determine the LSM (in SSTs) and the associated

changes in other fields. In fact, this projection-method may even prove to be the

most practical one for determining the LSM in non-aquaplanet configurations where

the above methods seem less applicable due to the higher phase-space dimension-

ality and necessary averaging times introduced by the non-zonality in the model
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statistics.
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