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Abstract

Nuclear fusion has been proposed as an alternative clean energy source. In
order to have a deep understanding of the dynamic properties of a fusion
plasma an accurate model is needed. Most investigations of fusion plasmas
have been done using two dimensional models, even though a realistic model
involves dynamics in three dimensions.

This thesis sets out to create a coordinate system aligned with the mag-
netic field in order to create a realistic model in three dimensions whilst
having a coarse resolution in the direction of the magnetic field.

Using the model created, an investigation of the Hasegawa-Wakatani
equations was done. Three different cases were investigated using three dif-
ferent values of magnetic shear.

The simulations showed a dependence on the magnetic shear for the sta-
bility of the system which is in accordance theory. The field-aligned coor-
dinate system created in this thesis shows promising results as the platform
for future simulations in three dimensions.
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Chapter 1

Introduction

1.1 Motivation

Since the beginning of the industrial revolution there has been an almost
exponential growth in worldwide energy consumption, which has lead to
an increase in emission of greenhouse gasses. Studies have shown a link
between an increase of greenhouse gasses in the atmosphere and an increase
in the global temperature. [1] The higher temperatures on earth can lead to
more extreme weather conditions and more non-nutritious land. So unless
something is done to stop the emission of greenhouse gasses the world stands
before a potential environmental catastrophe.

Many steps have been, and are currently being taken, in order to re-
duce the emission of greenhouse gasses. Various forms of sustainable energy
sources have been investigated. However most of the sustainable sources of
energy have some problematic traits.

Wind energy works fine in countries such as Denmark, a country that
is windy at almost all times. However even though wind energy might at
times meet the needs of a country like Denmark, it is highly unreliable due
to the chaotic nature of wind systems. At times where the windmills generate
excessive power there is currently no efficient way of storing the energy, since
most batteries are quite inefficient. Furthermore batteries consists of liquids
that are harmful to the environment. Another issue with windmills is that
they are only usable in windy countries. This means that windmills may be
part of the solution for having 100% sustainable energy, but not the only
solution.

1
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A similar problem arises with hydroelectric plants, it is great in countries
like Norway, a country with a lot of mountains that are necesarry in order
for hydroelectric plants to work, however countries with no mountains can
not rely on hydroelectric plants as the main energy source.

Solar cells rely on sunlight, and are, as windmills, unreliable. Furthermore
current solar cells are fragile and easily broken.

In conclusion solar-, wind- and hydroelectric energy can not stand alone
as environmentally sustainable energy sources, which means there is a need
for other sustainable energy sources. Another source of energy that could
potentially cover the global need is nuclear energy by fission. However a
problem arises with storage of the radioactive waste, where the waste has a
half-life of up to ∼ 200000 years [2]. Although discussion can be made as
to whether or not the storage of the waste is an unsolvable problem there is
still opposition among the general population towards nuclear fission.

This leads to one final solution to the energy crisis, which is nuclear
fusion. There is radioactive waste from fusion reactions, however the amount
of radioactive waste is not large, and the half-life of the waste is short (∼12
years [3]) and the waste can be confined within the power plant, making
transportation unnecessary. Working fusion reactors might be the solution
to obtaining energy production based solely on sustainable energy due to the
abundance on earth of the fuels used in a nuclear power plant.

1.2 Thermonuclear Fusion

A plasma is a gas consisting of ionized particles. The reaction of interest in a
plasma used for fusion power is the one between tritium (3H) and deuterium
(2H) [4]. Tritium can be obtained by splitting lithium, a common metal,
and deuterium is found in water(∼ 0.0156% of the water [5]). The fusion
between tritium and deuterium gives a high energy output [4], and as seen
in figure 1.1, which is a plot of the cross sections of three different reactions
as a function of temperature, it has the highest cross section between 10 and
100 keV deuteron energy of the three reactions shown (the cross section is a
measure of the probability of the two fusing).

The reaction of interest is thus

2
1H +3

1 H→4
2 He + n (1.1)
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Figure 1.1: The cross section as a function of deuteron energy [4].

The system must conserve energy and momentum, allowing us to calculate
the energy freed in the fusion process. The sum of the rest energy of tritium
and deuterium can be subtracted from the sum of the rest energy of helium
and a neutron. We know that the excessive energy must be stored in the
momentum of the neutron and the momentum of the helium core. The rest
energy is given by Einsteins equation [2]

Erest = mc2 (1.2)

The mass of deuterium is 2.01410178 u [2], the mass of tritium is 3.0160492
u, the mass of helium is 4.002602 u and the mass of the neutron is 1.008664
u. The energy freed is thus

2.01410178u + 3.0160492u− (4.002602u + 1.008664u) = 0.01888498u

One atomic mass unit is equivalent to 931.494 MeV
c

[2] and we have

0.01888498 · 931.494MeV = 17.6MeV
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freed energy per reaction. To achieve fusion, however, one must overcome
the Coulomb barrier, which requires high temperatures [6]. As seen in figure
1.1 the ideal energy of the deuterons to maximize the number of collisions is
∼ 100 keV. To convert electron volt to kelvin we multiply by e

kB
≈ 11600.

The naive guess at the ideal temperature for fusion devices is thus 1.16·109K,
however other factors must be taken in to account.

If the distribution of particles is Maxwellian, the reaction rate for deuterium-
tritium reactions can be written as [4]

R = ndnt〈σv〉

where nd and nt is the amount of deuterium and tritium atoms respectively.
The thermonuclear power per unit volume is then the reaction rate times the
energy released per reaction [4]

pT = ndnt〈σv〉ε = (n− nt)nt〈σv〉ε, (1.3)

where the total ion density is n = nd + nt, since the helium cores con-
tribute with almost nothing to the total density. It is seen that the ther-
monuclear power per unit volume is optimized when nd = nt in which case
the thermonuclear power per unit volume reads

pT =
1

4
n2〈σv〉ε

The total loss in the confined plasma is given by W = 3nTV [4], where
the bar denotes an average, T is the plasma temperature and V is the volume.
The rate of loss is expressed as [4]

PL =
W

τE
, (1.4)

where τE is the energy confinement time. The alpha particle (helium
core) is confined by the external magnetic field and the energy of the alpha
particle stays in the system and is transferred to the other particles through
collisions. After a collision fusing two particles about 4

5
of the energy is in
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the neutron and the rest is in the alpha particle [4]. In order to have as much
energy stay in the system as is lost, we must have

PH + Pα = PL,

where PH is an external power source, and Pα is the heating caused
by the α-particles. The total α-particle heating can also be expressed as
1
4
n2〈σv〉εαV [4], where the bar denotes an average, and εα is the energy

carried by the α-particles.
It is possible to have all required heating of the plasma, come from the

α-particle heating. When this is achieved it is called ignition. The ignition
criteria is thus that Pα > PL or

nτE ≥
12

〈σv〉
T

εα
, (1.5)

where the bars have been omitted for convenience. The right hand side
is only a function of temperature and a graph of nτE as a function of T can
be seen in figure 1.2. As seen on the graph the minimum required nτE for
ignition occurs at T ∼ 20keV or at approximately 200 million degrees kelvin.

Since ignition is required for fusion devices as an energy source, the op-
timal temperature for a fusion device is at 20 keV. However no known solid
material can withstand such temperatures, and another way of confining the
plasma is needed. Luckily, a plasma consists of charged particles and can thus
be confined by an external magnetic field. The two currently most promising
devices, are the tokamak and the stellarator, where the focus in this thesis
is on the tokamak.
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Figure 1.2: nτE as a function of T [4]
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1.3 The Tokamak

The tokamak is a device for confining a plasma by the use of an external
magnetic field. It is torus-shaped with magnetic coils surrounding it. In
order to create a magnetic field that confines the plasma, both magnetic
fields in the poloidal and toroidal directions are generated [4].

Figure 1.3 is a graphical illustration of a tokamak, showing the toroidal-
and inner and outer poloidal coils, which result in twisted magnetic field lines
in the plasma. The magnetic field of the tokamak is described in detail in
chapter 4 and is a central part of understanding the dynamics of a magneti-
cally confined plasma. The in depth handling of the subject is therefore left
for the chapter. I will, however, give a brief introduction to the shape of the
magnetic field.

The magnetic field can be expressed by a toroidal and poloidal part, with
a toroidal field given by

Bt = I(ψ)∇φ,

where I is a function of the poloidal flux function, ψ, and φ is the toroidal
angle, and the poloidal field given by

Bp = ∇φ×∇ψ. (1.6)

Usually when touching the subject of a fusion plasma the analysis is
centered around three different regions of the fusion plasma. The core region,
where the magnetic field lines are closed, i.e. when the field lines will at some
point close in on themselves, and form almost circular poloidal cross sections.
The edge region that includes an X-point, which is the point at which the
magnetic field lines go from closed to open. The X-point is sometimes called
the separatrix. And finally a region of open field lines called the scrape of
layer (SOL). Figure 1.4 shows the poloidal cross section of a tokamak, where
the described regions can be seen. This thesis focuses on the edge region
right before the X-point.

The shape of the magnetic field will be used to create a field-aligned
coordinate system, used for simulating the Hasegawa-Wakatani equations,
a simplified fluid model describing the dynamics a fusion plasma, and will
create a platform with the possibility of simulating more complex equations
in the future.
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Figure 1.3: Graphical illustration of a tokamak [7].

Figure 1.4: Poloidal cross section of a tokamak [8].
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The outline of this thesis is as follows:
In chapter 2 a fluid description of fusion plasma dynamics is derived.
Chapter 3 gives a short description of the differential geometry used in

this section
In chapter 4 a description of the shape of the magnetic field is described

followed by a derivation of a set of coordinates aligned with the magnetic
field.

In chapter 5 the Hasegawa-Wakatani model in curvilinear geometry is
derived, by using simplifying assumptions on the fluid equations derived in
chapter 2.

Chapter 6 describes the results of simulations perfomed for the Hasegawa-
Wakatani model found in chapter 5.

And finally in chapter 7 we have the conclusion.
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Chapter 2

The Two Fluid Equations

1A plasma usually consists of at least two species of particles and it is there-
fore convenient to describe a plasma in terms of these different species. In
principle if the momenta and positions of all particles in a plasma are known
at a given time, the behaviour of the plasma could be described exact. How-
ever a fusion plasma usually consists of more than 1024 particles of different
species, making it impossible to simulate plasma properties using an indi-
vidual particle model due to limited processing power, even if the initial
momenta and positions of all particles are known.

It is therefore convenient to model a plasma differently, and it turns out
that a plasma can be modelled as a fluid by using few assumptions.

2.1 The Vlasov Equation

In order to describe the evolution of a plasma we start by considering a point
in one-dimensional phase space, which can be represented by the distribution
function f(x, v, t). Next, we examine a box in one-dimensional phase space
of width dx and of height dv (see figure 2.1 [9]). Now the rate of change
of particles in the one dimensional box can be described. The particle flux
in the horizontal direction is given by f(x, v, t)v, where v = dx

dt
and in the

vertical direction by f(x, v, t)a, where the acceleration a = dv
dt

.
The flux into the left side of the box is given by the flux at x times the

length of the side, so f(x, v, t)vdv, and into the right side at x + dx with

1This chapter is a continuation of material written by me for a project in plasma
physics.

11
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Figure 2.1: A box within phase-space having width dx and height dv. [9]

length dv it is given by −f(x+ dx, v, t)vdv.
The flux into the bottom of the box at v with the length of the bottom

being dx is f(x, v, t)adx, and into the top it is −f(x, v + dv, t)adx.
The total rate of change in the box will then be given by

∂f(x, v, t)

∂t
dvdx = −f(x+ dx, v, t)vdv + f(x, v, t)vdv

−f(x, v + dv, t)adx+ f(x, v, t)adx (2.1)

Since we are in phase space v is independent of x, so all x operators
commute with v and vice versa. Furthermore dividing by dvdx and using

lim
dx→0

f(x+ dx, v, t)v − f(x, v, t)v

dx
= v

∂f(x, v, t)

∂x
,

and

lim
dv→0

f(x, v + dv, t)a− f(x, v, t)a

dv
=
∂(af(x, v, t))

∂v
,

we arrive at the one dimensional Vlasov equation.

∂f(x, v, t)

∂t
+ v

∂f(x, v, t)

∂x
+
∂(af(x, v, t))

∂v
= 0. (2.2)
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This can be generalized to three dimensions [9]

∂f(x,v, t)

∂t
+ v

∂f(x,v, t)

∂x
+
∂(af(x,v, t))

∂v
= 0.

The acceleration in the case of a plasma is given by the Lorentz force [9],

a =
q

m
(E + v×B). (2.3)

Since (v×B)i is perpendicular to vi we have

∂(v×B)i
∂vi

= 0,

meaning that ∂
∂v

and a commute. Using this, the Vlasov equation can be
rewritten to

∂f(x,v, t)

∂t
+ v · ∂f(x,v, t)

∂x
+ a · ∂f(x,v, t)

∂v
= 0. (2.4)

2.1.1 Moments and collisions in the Vlasov equation

In the following section moments will be taken of the Vlasov equation to get
a useful description of a two-fluid plasma. Taking moments is the procedure
of multiplying f by powers of v and integrating it with respect to v [9]. Since
we will be looking at the dynamics of different species, we denote f by its
specie type σ as fσ. To get the particle density in configuration space, we
integrate the distribution function with respect to velocity in phase space,

n(x, t) =

∫
fσ(x,v, t)dv. (2.5)

The mean velocity of the particles is given by

u =

∫
v
fσ(x,v, t)

n(x, t)
dv. (2.6)



14 CHAPTER 2. THE TWO FLUID EQUATIONS

Figure 2.2: View of collisions in 1D phase space [9]

Collisions of two particles (nuclei and electrons) of different species changes
the speed of the two particles significantly, whilst remaining at approximately
the same position. An illustration of a collision can be seen in figure 2, and
as seen from the figure you can view collisions as an annihilation of the col-
liding particles and the creation of two new [9]. The coupling of annihilation
and creation rates constrains the form of the collision operator. Including
collisions the Vlasov equation now takes the form:

∂fσ(x,v, t)

∂t
+ v · ∂fσ(x,v, t)

∂x
+ a · ∂fσ(x,v, t)

∂v
=
∑
α

Cσα(fσ(x,v, t)) (2.7)

Where Cσα is the rate of change of fσ due to collisions between particles
of species σ with species α.

Constraints on the collision operator will help in the derivation of the
moments of the Vlasov equation. The constraints on the collision operator
are:

Constraint 1 Conservation of particles. A collision will not change the
number of particles at a specific location (unless of course there is fusion,
but even in high reaction plasmas, collisions where the two particles fuse are
negligible on a large scale compared to other collisions).
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∫
dvCσα(fσ) = 0 (2.8)

Constraint 2 Conservation of momentum. As in all other physical situ-
ations momentum must be conserved.

∫
dvmσvCσα(fσ) +

∫
dvmαvCασ(fα) = 0 (2.9)

Constraint 3 Conservation of energy. As in all other isolated physical
systems energy must be conserved.

∫
dvmσv

2Cσα(fσ) +

∫
dvmαv

2Cασ(fα) = 0 (2.10)

where v2 = v·v. With these constraints on the collision operator in mind,
we are now able to take the first three moments of the Vlasov equation (0th,
1st and 2nd). Taking the zeroth moment we have

∫ (
∂fσ(x,v, t)

∂t
+ v · ∂fσ(x,v, t)

∂x
+ a · ∂fσ(x,v, t)

∂v

)
dv =

∫
dv
∑
α

Cσα(fσ(x,v, t)).

(2.11)

The derivatives of the first and second term of the left hand side both
commute with the velocity integral, leaving us with an integral of the distri-
bution function over all of velocity space. The right hand side gives zero due
to our constraints on the collision operator. Evaluating the integral of the
third term we have

∫
V

dv∇v · afσ(x,v, t) =

∫
S

ds · afσ(x,v, t) = 0. (2.12)

In the above calculation gauss’ law has been used, and the fact that
f(x, v, t) goes to zero as v goes to infinity makes the surface integral at
infinity disappear. Furthermore using eq. (2.5) and (2.6) we have the zeroth
moment:
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∂nσ
∂t

+∇ · (nσuσ) = 0 (2.13)

To get the first moment we multiply by the velocity on both sides of the
Vlasov equation, eq. (2.7), and integrate with respect to v.

∫ (
v
∂fσ(x,v, t)

∂t
+ vv · ∂fσ(x,v, t)

∂x
+ va · ∂fσ(x,v, t)

∂v

)
dv

=

∫
dv
∑
α

Cσα(fσ(x,v, t))v (2.14)

Now looking at each term individually, we have uσnσ for the first term,
as we found when deriving the equation for the 0th moment. For the second
term we write the individual particle velocity v in terms of a flow velocity
term, uσ, and a fluctuating velocity term, v′, so v = v’ + uσ, hence we also
have dv = dv’. Rewriting the second term on the left hand side of eq. (2.14)
we have

1

∂x
·
∫

vvfσ(x,v, t)dv =
1

∂x
·
∫

(v’v’ + uσuσ + v’uσ + uσv’)fσ(x,v, t)dv’

(2.15)

Since the flow velocity is the total particle velocity, the integral over
velocity space must be zero for any term including only one term of v’ [9].
We define the pressure tensor as:

↔
Pσ= mσ

∫
v’v’fσ(x,v, t)dv’ (2.16)

This gives for the second term on the left hand side of eq. (2.14):

1

∂x
·
(

1

mσ

↔
Pσ +uσuσnσ

)
(2.17)

The last term on the left hand side of eq. (2.14) is
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∫
va · ∂fσ(x,v, t)

∂v
dv (2.18)

Using eq. (2.3) and integrating by parts whilst keeping in mind that the
integral of the divergence of f is zero, we have

∫
va · ∂fσ(x,v, t)

∂v
dv = v · 0−

∫
∂v

∂v
· fσ(x,v, t)

q

m
[E + v×B]dv (2.19)

= −
∫
fσ(x,v, t)

q

m
[E + v×B]dv.

Rewriting the velocity in terms of an average flow velocity and a random
velocity, and using that the integral of terms involving the random velocity
to the power of one is zero, we have

−
∫
fσ(x,v, t)

qσ
mσ

[E + uσ ×B]dv = −nσ
qσ
mσ

[E + uσ ×B] (2.20)

Finally we look at the collision term on the right hand side of eq. (2.14),
where we introduce a frictional drag force, Rσα [9], which must be zero for
σ = α since collisions between particles of the same species cannot change
the total momentum of that species. The drag force is given by

Rσα = νσαmσnσ(uσ − uα) (2.21)

which leaves us with an equation for the first moment of the Vlasov
equation

uσnσ +
1

∂x
·
(

1

mσ

↔
Pσ +uσuσnσ

)
− nσ

qσ
mσ

[E + uσ ×B] = − 1

mσ

Rσα

(2.22)

which is usually multiplied by mσ and rewritten as [9]

mσ

[
∂(nσuσ)

∂t
+

∂

∂x
· (nσuσuσ)

]
= nσqσ(E + uσ ×B)− ∂

∂x
·
↔
Pσ −Rσα.

(2.23)
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To calculate the second moment of the Vlasov equation we first make
a simplifying assumption of the pressure tensor. The assumption is that
fσ(x,v, t) is isotropic, in which case only the diagonal terms of the pressure
tensor are non-zero. For that case we define the scalar pressure

Pσ = mσ

∫
v′xv

′
xfσ(x,v, t)dv′σ = mσ

∫
v′yv
′
yfσ(x,v, t)dv′σ

= mσ

∫
v′zv
′
zfσ(x,v, t)dv′σ =

mσ

3

∫
v′σ · v′σfσ(x,v, t)dv′. (2.24)

Sometimes it is convenient to work with systems of reduced dimensional-
ity, where the scalar pressure can be generalized to [9]

Pσ =
mσ

N

∫
v′σ · v′σfσ(x,v, t)dNv′ (2.25)

where N is the number of dimensions.
We now take the second moment of the Vlasov equation, by multiplying

with mσ
v2

2
and integrating with respect to the velocity on both sides. This

time, however, we integrate with respect to an N -dimensional velocity space.

∫ (
∂

∂t

mσv
2

2
fσ(x,v, t) +

∂

∂x
· mσv

2

2
vfσ(x,v, t)

+qσ
v2

2

∂

∂v
· (E + v×B)fσ(x,v, t)

)
dNv

=
∑
σ

∫
mσv

2

2
fσ(x,v, t)Cσαd

Nv (2.26)

To derive something useful, it is convenient to once again look at the
individual parts of the equation. Using v = uσ + v′ throughout we have the
first term

∫
∂

∂t

mσ(uσ + v′)2

2
fσ(x,v, t)dNv =

∂

∂t

(
nσmσu

2
σ

2
+
NPσ

2

)
(2.27)

Using eq. (2.24) and (2.25) and introducing the heat flux Qσ =
∫

mσv′2

2
v′fσd

Nv
we get for the second term on the left hand side of eq. (2.26)
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∂

∂x
·
∫
mσ(uσ + v′)2

2
(uσ + v′)fσ(x,v, t)dNv = ∇ ·

(
Qσ +

2 +N

2
Pσuσ +

mσnσu
2
σ

2
uσ

)
(2.28)

Integrating by parts and recalling that the integral of the divergence of f
is zero, and that v×B must be perpendicular to v we get for the third term
on the left hand side of eq. (2.28)

∫ (
qσ
v2

2

∂

∂v
· (E + v×B)fσ(x,v, t)

)
dNv = −qσ

∫
v · Efσ(x,v, t)dNv

(2.29)

= −qσ
∫

(uσ + v′) · Efσ(x,v, t)dNv′ = −qσnσuσ · E

(2.30)

Finally we look at the collision term on the right hand side. From (2.9)
we know that only terms where σ 6= α gives a non-zero value, and what is
left corresponds to the energy transfer from species σ to species α denoted
by −(∂W

∂t
)Eσα. The second moment is thus given by

∂

∂t

(
nσmσu

2
σ

2
+
NPσ

2

)
+∇ ·

(
Qσ +

2 +N

2
Pσuσ +

mσnσuσu
2
σ

2
uσ

)
(2.31)

−qσnσuσ · E = −
(
∂W

∂t

)
Eσα

By introducing the convective derivative,

d

dt
=

∂

∂t
+ uσ ·

∂

∂x
, (2.32)

we can rewrite both the first and second moment of the Vlasov equation.

Using the relation found from eq. (2.13) and expanding the derivatives
on the left hand side we can rewrite the first moment eq. (2.23) (where the
pressure tensor has been replaced by the scalar pressure) to
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nσmσ
duσ
dt

= nσqσ (E + uσ ×B)−∇Pσ −Rσα (2.33)

In the second moment the terms with the velocity squared can be collected
on the left hand side and rewritten by using the convective derivative. To
simplify the second moment further, both sides of the first moment of the
Vlasov equation is dotted with uσ.

uσ · nσmσ
duσ
dt

= uσ · (nσqσ(E + uσ ×B)−∇Pσ −Rσα) (2.34)

Using the vector relation

∇(uσ · uσ) = 2uσ × (∇× uσ) + 2(uσ · ∇)uσ (2.35)

we have

nσmσ

[
∂

∂t

(
u2σ
2

)
+ uσ ·

(
∇
(
u2σ
2

)
− uσ ×∇× uσ

)]
(2.36)

= nσqσuσ · E− uσ · ∇P −Rσα · uσ

this leaves us with an expression for the second moment of the Vlasov
equation which reads

N

2

dPσ
dt

+
2 +N

2
P∇ · uσ = −∇ ·Qσ + Rσα · uσ −

(
∂W

∂t

)
Eσα

(2.37)

The derived equations are what is typically called the two-fluid equations
[9].

In summary we have three two-fluid equations. The equation describing
the zeroth moment (2.13) is also called the continuity equation, the equation
describing the first moment (2.33) is called the momentum conservation equa-
tion or often referred to as the equation of motion, and finally the equation
describing the second moment (2.37) is also called the energy conservation
equation or often referred to as the energy evolution equation.
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So in summary we have the continuity equation

∂nσ
∂t

+∇ · (nσuσ) = 0, (2.38)

the momentum conservation equation

nσmσ
duσ
dt

= nσqσ(E + uσ ×B)−∇Pσ −Rσα (2.39)

and the energy conservation equation

N

2

dPσ
dt

+
2 +N

2
P∇ · uσ = −∇ ·Qσ + Rσα · uσ − (

∂W

∂t
)Eσα (2.40)

2.2 The closure problem

In the previous section three equations were derived describing the averaged
evolution of two species of charged particles, however the continuity equation
requires us to find a solution for uσ, which can be found using the momentum
conservation equation, which in turn requires a solution for the pressure
tensor to be found, which exists in the energy conservation equation, which
requires a solution for the heat flux, which can be found taking the third
moment of the Vlasov equation. However taking the third moment will
give another term appearing in the fourth moment, and this will continue
indefinitely and is called the closure problem. To close the set of equations
we can take the adiabatic, or the isothermal limit of the second moment [9].
In the isothermal limit the heat flux term dominates all the other terms, and
the temperature becomes isotropic. In the adiabatic limit the left hand side
terms dominates the right hand side terms of eq. (2.40).

For the adiabatic limit we have

N

2

dPσ
dt

= −2 +N

2
Pσ · ∇uσ (2.41)

Using the continuity equation and defining γ = N+2
N

we get
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1

Pσ

dPσ
dt

=
γ

nσ

dnσ
dt
⇔ (2.42)

ln(Pσ) = g ln(nσ)γ ⇔ (2.43)

Pσ = knγσ (2.44)

where g is an integration constant. For the isothermal limit we simply
use the ideal gas law to find the pressure, hence

Pσ = κnσTσ (2.45)

Now we have a closed set of equations, however we do not yet have an
expression for the fluid velocity.

2.3 Drift Equations

In this subsection we derive the drift (velocity) equations for a charged fluid
in a slowly varying electromagnetic field.

The drift velocities are obtained by solving the momentum equation it-
eratively and the simplest solution is found by assuming that the electric
and magnetic fields are constant in time. It is a good assumption that the
momentum equations can be solved iteratively if the magnetic and electric
fields are slowly varying. [6] Assuming that the timescale of the collisions is
on the same order of the slowly varying fields in terms of the small parameter
δ, the momentum equation, eq. (2.39), reads

0 = E + uσ0 ×B− ∇Pσ
nσqσ

. (2.46)

Crossing all terms with B on the right grants a solution reading

uσ0 =
E×B

B2
− ∇Pσ ×B

nσqσB2
(2.47)

We now have the 0th order solution, where the first term on the right hand
side is called the E×B-drift and the second term is called the diamagnetic
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drift. The solution can then be plugged in to the left side of the momentum
equation and solved using the same procedure giving a correction of order δ.
This procedure can be done iteratively to n’th order. However, in this thesis
we only do it to 1st order. We find the first order drift to be

uσ1 = − mi

eB2
(∂t(uσ0 ×B) + (uσ0 · ∇)(uσ0 ×B)) +

E×B

B2
− ∇Pσ ×B

nσqσB2

(2.48)

Together with the two fluid equations (eqns. (2.38)-(2.40)) and either the
adiabatic (eq. (2.44)) or the isothermal (eq. (2.45)) limit we have a way of
describing a fusion plasma with a closed set of differential equations.
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Chapter 3

Differential Geometry

In order to accurately simulate the 3-dimensional behaviour of a fusion
plasma it is convenient to describe the equations governing the behaviour
in a curvilinear geometry. This chapter will give a brief explanation of the
differential geometry used to derive the curvilinear field-aligned coordinates.

3.1 Contra- and Covariant vectors

A term often used in differential geometry is contra- and covariant tensors.
To explain the concept of these, we start by defining a set of reciprogal
vectors.

Imagine we have a set of vectors A, B and C, and another set of vectors
a, b and c. If

A · a = B · b = C · c = 1, (3.1)

and

A · b = A · c = B · a = B · c = C · a = C · b = 0 (3.2)

the two sets are said to be reciprogal [10].
Since a · B = a · C = 0, a must be orthogonal to B and C. We then

know that a can be written as a = KB × C where K is some constant.
We also know that a ·A = 1, which means that the constant is found to be

25
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K = (A·(B×C))−1. The same procedure can be followed to find expressions
for b and c. Writing out the derived expressions for a, b and c in terms of
A, B and C we have:

a =
B×C

A · (B×C)
(3.3)

b =
C×A

B · (C×A)
(3.4)

c =
A×B

C · (A×B)
(3.5)

A similar expression can be written for A, B and C in terms of a, b and
c, by interchanging a with A, b with B and c with C. Any vector can be
written as a linear combination of a reciprogal set [10].

Now consider a transformation R(u1, u2, u3), where a point determined by
the position vector R is given by a function of three curvilinear coordinates
u1, u2 and u3. R can now be expanded in terms of its cartesian components

R :
x(u1, u2, u3)
y(u1, u2, u3)
z(u1, u2, u3)

(3.6)

If the transformation is one-to-one it can be inverted and thus

u1(x, y, z)
u2(x, y, z)
u3(x, y, z)

(3.7)

Hence the point R can be described uniquely by u1, u2 and u3. We now
set out to define a reciprogal basis set at the point u1, u2, u3 determined by
the position vector, R.

We start by defining a tangent basis e1 along a coordinate curve (a co-
ordinate curve is found by holding two coordinates fixed, whilst letting only
one vary). We choose the tangent basis vectors to be ∂R

∂ui
[10], hence:

e1 =
∂R

∂u1
, e2 =

∂R

∂u2
, e3 =

∂R

∂u3
(3.8)
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Note that this coordinate basis is local, and in general the derivative of R
with respect to ui varies from one point in space to another point in space [10].
We now find the reciprogal basis vectors in order to be able to express any
local vector as a linear combination of our set of basis vectors. The gradient
of a function φ is defined such that the differential of the function dφ is given
by dφ = ∇φ · dR, which means that

dui = ∇ui ·R (3.9)

using the chain rule dR = ∂R
∂uj
duj = ejdu

j we have

dui = ∇ui · ejduj (3.10)

which means that

∇ui · ej = δij (3.11)

and hence a set of reciprogal basis vectors given by

ei = ∇ui (3.12)

From eq. (3.3)-(3.5) we must also have

e1 = ∇u1 =
e2 × e3

e1 · (e2 × e3)
=

∂R
∂u2
× ∂R

∂u3

∂R
∂u1
· ( ∂R

∂u2
× ∂R

∂u3
)

(3.13)

e2 = ∇u2 =
e3 × e1

e2 · (e3 × e1)
=

∂R
∂u3
× ∂R

∂u1

∂R
∂u2
· ( ∂R

∂u3
× ∂R

∂u1
)

(3.14)

e3 = ∇u3 =
e1 × e2

e3 · (e1 × e2)
=

∂R
∂u1
× ∂R

∂u2

∂R
∂u3
· ( ∂R

∂u1
× ∂R

∂u2
)

(3.15)

In general basis vectors with indecies down are called tangent basis vec-
tors, and basis vectors with indecies up are called reciprogal basis vectors [10].

As stated earlier all vectors can be written as a linear combination of the
reciprogal vector set. Hence a vector, D, can be written as
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D = (D · a)A + (D · b)B + (D · c)C (3.16)

or

D = (D ·A)a + (D ·B)b + (D ·C)c (3.17)

In the case with our set of reciprogal basis vectors we can write

D = (D · e1)e
1 + (D · e2)e

2 + (D · e3)e
3 (3.18)

and

D = (D · e1)e1 + (D · e2)e2 + (D · e3)e3 (3.19)

rewriting the scalars in the parenthesis as (D · ei) = Di and (D · ei) = Di

we have

D = Diei (3.20)

D = Die
i (3.21)

where repeated indices imply the einstein summing convention. The coef-
ficients with the indices as subscripts, Di, are called the covariant coefficients
of the vector and the coefficients with the indices as superscripts, Di , are
called the contravariant coefficients of the vector [10]. In the rest of this
thesis they are simply reffered to as the covariant and contravariant vectors
for convenience.

3.2 The Metric and the Jacobian

In this section the metric and the jacobian will be defined. At the end of this
section all vector operators used in this thesis will be stated for curvilinear
geometry. For a more thorough explanation and derivations of the vector
operators in curvilinear geometry see [10], [11] or other textbooks on the
subject.
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In order to write curvilinear operators on a simple form it is convenient
to define a metric, which is a second order tensor including all necessary
information about the curvature of the system [10]. The metric can be ei-
ther covariant with indecies down, or contravariant with indecies up. The
coefficients of the covariant metric is defined as [10]

gij = ei · ej =
∂R

∂ui
· ∂R

∂uj
(3.22)

and for the contravariant [10]

gij = ei · ej = ∇ui · ∇uj (3.23)

according to eqns. (3.13)-(3.15) the covariant metric components can be
expressed in terms of the contravariant basis vectors and vice versa.

The Jacobian of the system is defined as the nine partial derivatives
of a set of coordinates (x, y, z) with respect to another set of coordinates
(u1, u2, u3) [10]. So

J =

 ∂x
∂u1

∂y
∂u1

∂z
∂u1

∂x
∂u2

∂y
∂u2

∂z
∂u2

∂x
∂u3

∂y
∂u3

∂z
∂u3

 (3.24)

In this thesis we are more often interested in the determinant of the
Jacobian and for convience we will refer to the determinant of the Jacobian
as the Jacobian from now on.

The Jacobian can be expressed in terms of the determinant of the metric.
The covariant metric components can be seen as the matrix product of the
two matrices ∂R

∂ui
and ∂R

∂uj
, using that the determinant of a matrix product is

the same as the product of the determinants we have

det(g) = det

(
∂R

∂ui

)
det

(
∂R

∂uj

)
= det

 ∂x
∂u1

∂y
∂u1

∂z
∂u1

∂x
∂u2

∂y
∂u2

∂z
∂u2

∂x
∂u3

∂y
∂u3

∂z
∂u3

 det

 ∂x
∂u1

∂y
∂u1

∂z
∂u1

∂x
∂u2

∂y
∂u2

∂z
∂u2

∂x
∂u3

∂y
∂u3

∂z
∂u3

 = J2

(3.25)
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where we have expressed R in it’s cartesian components, and where
det(J) = J . Denoting the determinant of the covariant metric as det(g) = g
we have the relation

√
g = J (3.26)

3.3 Differential operators in curvilinear ge-

ometry

With the metric and jacobian defined we now state the differential operators
in curvilinear geometry. They are [12]:

The gradient:

∇φ =
∂φ

∂ui
∇ui (3.27)

The divergence:

∇ ·A =
1

J

∂

∂ui
(JAi) (3.28)

The laplacian:

∇2φ =
1

J

∂

∂ui
(Jgij)

∂φ

∂ui
+ gij

∂2φ

∂ui∂uj
(3.29)

We now define a reference vector [12]

B0 = ∇z ×∇x,B0 =

√
gyy

J
(3.30)

and

b0 =
B0

B0

(3.31)
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The operators parallel and perpendicular to the magnetic field can now
be defined.

We have the parallel gradient

∇‖f = b0 · ∇f =
1
√
gyy

∂

∂y
f (3.32)

the parallel divergence

∇‖ · f =
B0√
gyy

∂

∂y

(
f

B0

)
(3.33)

and the parallel laplacian

∇2
‖φ = ∇ · b0b0 · ∇φ =

1

J

∂

∂y

(
J

gyy

∂φ

∂y

)
(3.34)

With the differential operators defined in a general curvilinear coordinate
system we are able to move on to describing the magnetic field.



32 CHAPTER 3. DIFFERENTIAL GEOMETRY



Chapter 4

Field aligned coordinates

In order to reduce the computational cost of 3D fusion plasma models signif-
icantly, and due to the fact that the magnetic field plays a significant role in
the confinement of the plasma, it is convenient to align the coordinates with
the magnetic field. The computational time is reduced due to the particles
moving rather freely along the magnetic field lines giving flat gradients in
the fieldline direction. Furthermore the global shape of the magnetic field
plays a significant role in the dynamics of the confined plasma, so an accu-
rate description of the shape of the magnetic field is necessary for a realistic
description of plasma dynamics.

In this section we will use the differential geometry introduced in chapter
3 to derive field-aligned coordinates, and to derive the metric for the field-
aligned coordinates containing all necesarry information about the shape of
the magnetic field.

4.1 The shape of the Magnetic Field

In this section we will describe the shape of the magnetic field in a tokamak.

Since the goal of this thesis is to simulate dynamics in a tokamak, the
magnetic field of interest is axisymmetric meaning that the components of
the magnetic field, when expressed in cylindrical coordinates (R, φ, z), are all
independent of φ. Note that seen from above φ points in the clockwise direc-
tion [11], and not counterclockwise as in traditional cylindrical coordinates,
meaning that R̂ × ẑ = φ̂. The magnetic field is divergence free and can be
written in terms of the vector potential A as B = ∇×A.

33
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We can split the magnetic field of a tokamak into a toroidal part, described
by φ̂, and a poloidal part, described by ẑ and R̂, such that

B = R̂BR + ẑBz + φ̂Bφ (4.1)

The poloidal part can be rewritten, using the vector potential and the
axisymmetric property of the magnetic field, as

Bp = R̂
∂Aφ
∂z
− ẑ 1

R

∂(RAφ)

∂R
(4.2)

To rewrite the magnetic field further, we introduce the poloidal flux func-
tion [11],

ψ(R, z) = −RAφ(R, z) (4.3)

and rewrite the magnetic field in the poloidal direction to

Bp = ∇φ×∇ψ (4.4)

It is seen that B · ∇ψ = 0, since

B · ∇ψ = B ·
(
∂ψ

∂R
R̂ +

∂ψ

∂z
ẑ

)
=

1

R

∂ψ

∂z

∂ψ

∂R
− 1

R

∂ψ

∂z

∂ψ

∂R
= 0 (4.5)

So the magnetic field lies on surfaces of constant ψ, which are called flux
surfaces [11].

The toroidal component of the magnetic field is in the direction of φ, so
we can write

Bt = φ̂Bφ = I(ψ)∇φ (4.6)

where I is an arbitrary flux function [11]. The total magnetic field is then
given by

B = I(ψ)∇φ+∇φ×∇ψ (4.7)
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4.1.1 MHD equilibrium

In order to find an expression for the poloidal flux function we must investi-
gate magnetohydrodynamic equilibrium (MHD). The MHD equations are a
special case of the Two-Fluid equations, where the fluid is modeled such that
it consists of only one particle specie. A detailed derivation of MHD can be
seen in books such as [9] and [6].

In order to investigate the MHD equilibrium, we start by defining some
new quantities. We define the current density [11]

J =
∑
σ

nσqσuσ (4.8)

where
∑

σ denotes the sum over all species. The center of mass velocity
[11]

U =
1

ρ

∑
σ

mσnσuσ, (4.9)

where

ρ =
∑
σ

mσnσ, (4.10)

and finally the MHD scalar pressure [11]

pMHD =
∑
σ

Pσ (4.11)

We now sum eq. (2.39) with respect to the two species of the two-fluid
equation (the two species being electrons and ions), eq. (2.39), in order to
get the MHD momentum equation

ρ
d

dt
U = (

∑
σ

nσqσ)E + J×B−∇pMHD (4.12)
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In MHD we look at spacial scales much larger than the debye length. The
debye length is the average length scale at which a charged particles charge
is cancelled by surrounding particle charges. Looking at scales much larger
than the debye length means we have quasineutrality and no charge effects
are seen on these length scales, and thus (

∑
σ nσqσ)E ≈ 0. Furthermore

looking at static equilbria we have [11]

J×B = ∇pMHD. (4.13)

Using the axisymmetric representation of the magnetic field given by eq.
(4.7), and the MHD equilibrium equation given by, eq. (4.13) we get

I(ψ)J×∇φ+ (J · ∇ψ)∇φ− (J · ∇φ)∇ψ = ∇pMHD. (4.14)

This can be dotted with ∇ψ on both sides to give

(I(ψ)J×∇φ− (J · ∇φ)∇ψ) · ∇ψ = ∇pMHD · ∇ψ (4.15)

Using Amperes law for a static electric field

∇×B = µ0J (4.16)

and plugging in the expression for the magnetic field (eq. (4.7)) we get

µ0J = ∇× (I(ψ)∇φ+∇φ×∇ψ) (4.17)

= ∇I(ψ)×∇φ+∇2ψ∇φ+ (∇ψ · ∇)∇φ (4.18)

From eq. (4.13) it is clear that the magnetic field and the current density
lies on surfaces of constant ∇pMHD, due to the fact that B · ∇pMHD =
J · ∇pMHD = 0. This implies that the pressure is a flux function [11]. The
poloidal part of eq. (4.18) is

µ0Jp = ∇I ×∇φ (4.19)
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since ∇φ is in the toroidal direction. We can now calculate the toroidal
part of the current by plugging the poloidal part into eq. (4.15)

(µ−10 I(∇I ×∇φ)×∇φ− (J · ∇φ)∇ψ) · ∇ψ = ∇pMHD · ∇ψ (4.20)

where

µ−10 I(∇I ×∇φ)×∇φ = µ−10 I(∇I · ∇φ)∇φ− µ−10 I(∇φ · ∇φ)∇I (4.21)

= −µ−10 I

(
1

R2

)
∇I (4.22)

where we have used that ∇φ · ∇φ = gφφ = 1
R2

1. Using the chain rule,
such that ∇I = ∂

∂ψ
I∇ψ and ∇pMHD = ∂

∂ψ
pMHD∇ψ and denoting the partial

derivative with respect to ψ by ′ we have

(
II ′

µ0R2
− J · ∇φ

)
gψψ = p′MHDg

ψψ ⇒ (4.23)

J · ∇φ = −(p′MHD +
II ′

µ0R2
) (4.24)

We now plug in our result in to the poloidal part of eq. (4.18)

(∇×B) · ∇φ = −µ0

(
p′MHD +

II ′

µ0R2

)
(4.25)

Using a vector rule, we rewrite (∇×B)·∇φ = B·(∇×∇φ)+∇·(B×∇φ).
Using the expression for the magnetic field given in eq. (4.7) and the fact
that the curl of a gradient is zero we have

∇ · (B×∇φ) = ∇ · ((I∇φ+∇φ×∇ψ)×∇φ) (4.26)

= ∇ · ((∇φ×∇ψ)×∇φ) (4.27)

= ∇ ·
(

1

R2
∇ψ
)

(4.28)

1See Appendix A for the derivation of toroidal metric components
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where we have once again used that gφφ = ∇φ · ∇φ = 1
R2 . Plugging this

in to eq. (4.25) and multiplying by R2 on both sides gives

R2∇ ·
(

1

R2
∇ψ
)

= −µ0R
2p′MHD − II ′ (4.29)

Eq. (4.29) is called the Grad-Shafranov equation, and the solutions to it
describes the possible plasma equilibria [11]. In the general case eq. (4.29) is
only solveable numerically. We will, however, use an approximate analytical
solution, called the circle equilibrium solution later on as a basis for our
numerical investigation.

4.2 Modified Hamada coordinates

In order to align the coordinates with the magnetic field, an intermediate
step is to create a set of what is called flux coordinates. Flux coordinates
are created in a way, such that the coordinate system consists of two angular
(or angle like) coordinates and a radial flux coordinate which is defined to
be constant on a given flux surface [10].

For our flux coordinate we simply choose the poloidal flux function given
in eq. (4.3). For the other coordinates we impose that the contravariant
components of the magnetic field in our coordinate system are flux functions
[13] . We can then write the contravariant components of the magnetic field
as:

Bψ = B · ∇ψ = 0 (4.30)

Bθ = B · ∇θ = χ′(ψ) (4.31)

Bζ = B · ∇ζ = υ′(ψ) (4.32)

In order to proceed we must derive the two angle coordinates, by requiring
that the gradient of the coordinate dotted with the magnetic field must be
flux functions.

We start by deriving an expression for the poloidal-like coordinate θ.
For this, we start by introducing a parametric coordinate η defined in a
way such that it is monotonically increasing along the flux surface in the
poloidal direction [13]. It can hence be viewed as a coordinate describing the
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position along the magnetic field line in the poloidal plane. This implies that
∇η ⊥ ∇φ. We can now express θ in terms of the coordinates r, η, φ, where
r, η can be found from a one-to-one mapping from the poloidal part of the
cylindrical coordinates R, z → r, η. Now using the chain rule we have

B · ∇θ = B · ∇η ∂θ
∂η

+ B · ∇φ∂θ
∂φ

+ B · ∇r∂θ
∂r

(4.33)

= B · ∇η ∂θ
∂η
. (4.34)

Note that going from eq. (4.33) to (4.34) is only approximately true, it
can, however, be shown by solving the Grad-Shafranov equation that B · ∇r
is neglegible [13].

By seperating variables and using the contravariant θ-component of the
magnetic field given by eq. (4.31) we have

∂θ = χ′(ψ)
∂η

B · ∇η
⇒ (4.35)

θ = χ′(ψ)

∫ η

η0

dη

B · ∇η
(4.36)

where we have defined

χ′(ψ) = 2π

(∮
dη

B · ∇η

)−1
(4.37)

in order for θ to be periodic in 2π [13]. We now have a coordinate θ that
ensures a contravariant component of Bθ which is a flux function.

For the other angle-like coordinate we can not simply choose the toroidal
coordinate as before, since

Bφ = B · ∇φ = Igφφ =
I

R2
(4.38)

is not a flux function2. We can, however, choose the toroidal coordinate
plus a function and require that the sum of the two components of the con-
travariant part of the magnetic field is a flux function. We then define the
ζ-coordinate to be [13]

2While I is indeed a flux function, the same is not true for 1
R2 in general.



40 CHAPTER 4. FIELD ALIGNED COORDINATES

ζ = φ+ f(η, ψ) (4.39)

which, with our requirements, gives

B · ∇ζ =
∂ζ

∂φ
B · ∇φ+

∂ζ

∂η
B · ∇η (4.40)

=
I

R2
+ B · ∇η∂f

∂η
= υ′(ψ) (4.41)

This leaves us with an equation for f

f =

∫ η

η0

dη

B · ∇η

(
υ′(ψ)− I

R2

)
(4.42)

We now require that over a flux surface average we move in the φ-direction
[13]. We start by defining the general flux surface average

〈h(η, ψ)〉 =
χ′

2π

∫ η1

η0

dη

B · ∇η
h(η, ψ) (4.43)

where in the case of closed flux surfaces we have η0 = 0 and η1 = 2π.
Now, since we require that the flux surface average of f dissappears, we must
have

υ′(ψ) =

〈
I(ψ)

R2

〉
= I

〈
1

R2

〉
(4.44)

For the last coordinate we then get

ζ = φ+ I

∫ η

η0

dη

B · ∇η

(〈
1

R2

〉
− 1

R2

)
(4.45)

The derived coordinate system, also called modified Hamada coordi-
nates3, preserves the axisymmetry [13], but is no longer orthogonal, which
can be seen by the fact that the contravariant metric has non-diagonal com-
ponents4. We have also ensured a periodicity in θ and ζ.

3These Coordinates differ from the usual Hamada coordinates by not requiring that
the Jacobian is one. [10] [13]

4Since this is equivalent to the fact that ∇xi · ∇xj is not zero for all i 6= j
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4.3 Field-Aligned Hamada Coordinates

We now go back to looking at the magnetic field. The goal is to have the
contravariant component of the magnetic field be zero in all, except for one
coordinate, denoted as y, since this is equivalent to the magnetic field moving
along the ∇y.

As expressed by eqns. (4.30)-(4.32) we know that we must be able to
express the magnetic field in terms of a cross product between ∇ψ and some-
thing else. Now using the inverse of eqns (3.13)-(3.15) and eq. (3.19) we can
write

B = (B · ∇ψ)eψ + (B · ∇θ)eθ + (B · ∇ζ)eζ (4.46)

=
χ′∇ζ ×∇ψ + υ′∇ψ ×∇ζ

∇ψ · (∇θ ×∇ζ)
(4.47)

= J∇ψ × (υ′∇θ − χ′∇ζ) (4.48)

where 1
∇ψ·(∇θ×∇ζ) is the same as the Jacobian of the covariant metric of

the coordinate system [10]. Now the safety factor, the number of full toroidal
circuits per full poloidal circuits of a magnetic field line, can be expressed as

q(ψ) =
〈B · ∇φ〉
〈B · ∇θ〉

=
B · ζ
B · θ

=
χ′

υ′
(4.49)

which means we can rewrite the expression for the magnetic field to [13]

B = χ′J∇(ζ − qθ)×∇ψ (4.50)

We can now create a coordinate system aligned with the magnetic field.
A naive guess would be to choose our new coordinates such that they read

x′ = ψ (4.51)

y′ = θ (4.52)

z′ = ζ − qθ, (4.53)

however, in the programming platform/C++ package manager used in
this thesis called BOUT++ [14], it is more convenient to have the magnetic
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field written in what is called normalized Clebsch form [10]. Normalized
Clebsch form means that the magnetic field is represented as [10]

B = e3 × e1 (4.54)

We know that χ′ is a flux function and the Jacobian is also a flux function
[13]. This can be shown by requiring that the magnetic field be divergence
free (which it must be according to Maxwells equations), and by taking the
divergence of eq. (4.48), and using several vector rules5 and the fact that χ′

and υ′ are flux functions we have [13]

∇ ·B = ∇J · ∇ψ × (υ′∇θ − χ′∇ζ) = 0 (4.55)

which means that J ‖ ψ, and thus that J is a flux function. This allows
us to define a coordinate that is a flux function, and write the magnetic field
on normalized Clebsch form. The coordinates are

x =

∫
(Jχ′)dψ (4.56)

y = θ (4.57)

z = ζ − qθ (4.58)

and the magnetic field is

B = ∇z ×∇x (4.59)

Note that the shift in z makes y aligned with the magnetic field. This
can be explained by holding z constant and moving along y, if you do so
you must move along both θ and ζ. Where the Hamada coordinates were
periodic, this is no longer the case for the y-coordinate. However we do have
what is called pseudoperiodicity, which means that

f(x, y + 2π, z) = f(x, y, z − 2πq) (4.60)

We now have a set of field-aligned coordinates true for any solution to
the Grad-Shafranov equation (eq. (4.29)).

5See Appendix B for useful vector identities
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4.4 The Circle Equilibrium Model

In the simulations performed in this thesis a simple analytical solution to
the Grad-Shafranov equation (eq. (4.29)) is used. In order to get an ana-
lytical expression for the fieldaligned coordinates and create a simple, but
realistic model, a circle equilibrium solution to the Grad-Shafranov equation
is assumed, which holds in the large aspect ratio limit, where R0

r
>> 1 (see

figure 4.1). This assumption means that ψ is now a function of r only, where
ε is the inverse aspect ratio r

R0
and is a small parameter [11]6. This incon-

sistency can be solved in future models involving more complex solutions
to the Grad-Shafranov equation, but is not done in this thesis. The circle
equilibrium model means that the parametric coordinate η reduces to the
poloidal angle coordinate in a toroidal coordinate system7. We then have

B · ∇η = (I∇φ+∇φ×∇ψ) · ∇η =
∂ψ

∂r
∇φ×∇r · ∇η (4.61)

=
1

J

∂ψ

∂r
=

1

rR

∂ψ

∂r
(4.62)

where J is the Jacobian of a toroidal coordinate system, r denotes the
minor radius and R denotes the major radius as seen on figure 4.1 [15].

From now on we denote the poloidal angle by η, since the poloidal angle
is now equal to the parametric coordinate defined in the previous section.
By calculating the safety factor q, we can get an expression for ∂ψ

∂r
.

q =
〈B · ∇φ〉
〈B · ∇η〉

=
〈 I
R2 〉
〈 1
rR
ψ′〉

. (4.63)

Calculating the flux surface average of B · ∇φ gives [13]

6Such a circle equilibrium can be found by assuming Solovev type solustions (where I is
constant and pMHD ∝ ψ) to the Grad-Shafranov equation and using the large-aspect ratio
limit [11]. Note that this is equivalent to throwing away terms of order O(ε) in the solution
to the Grad-Shafranov equation whilst keeping terms of O(ε) in the other derivations [11]

7See Appendix A for a derivation of the toroidal coordinates, the metric entries and
the Jacobian
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Figure 4.1: Toroidal coordinates (note that θ is different from the Hamada
θ)

〈B · ∇φ〉 =
χ′

2π

∫ 2π

0

I

R2

dη

B · ∇η
=

rχ′I

R0ψ′2π

∫ 2π

0

1

1 + ε cos(η)
(4.64)

=
rχ′I

R0ψ′2π

2π√
1− ε2

. (4.65)

The flux surface average of B · ∇η is

〈B · ∇η〉 =
χ′

2π

∫ 2π

0

dη = χ′ (4.66)

We now have an expression for q in terms of flux functions only,

q =
rI

R0ψ′
√

1− ε2
, (4.67)

which gives us an expression for ψ′

ψ′ =
rI

R0q
√

1− ε2
(4.68)
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We now calculate the angle-like Hamada coordinates for the circle equi-
librium model. Recalling eq. (4.36) all we have to calculate is the integral.
We have

∫ η

η0

dη

B · ∇η
=

r

ψ′

∫ η

η0

R0(1 + ε cos(η))dη =
rR0

ψ′
[η + ε sin(η)]ηη0 (4.69)

From eq. (4.37) we have the definition of χ′, which in our case leads to

χ′ =
ψ′

rR0

(4.70)

so our theta coordinate (eq. (4.36)) becomes

θ = [η + ε sin(η)]ηη0 (4.71)

From eq. (4.45) we have an expression for the ζ-coordinate, which involves
two integrals. We start by calculating the flux-surface averaged part.

〈
1

R2

〉
=

rχ′

2πψ′

∫ 2π

0

dη

R0(1 + ε cos(η))
=

rχ′

2πR0ψ′
2π√

1− ε2
=

1

R2
0

√
1− ε2

(4.72)

The first integral can then be found by multiplying the flux average of 1
R2

by eq. (4.69). The second integral gives us

∫ η

η0

1

R2

dη

B · ∇η
=

r

R0ψ′

∫ η

η0

dη

1 + cos(η)
(4.73)

Here one has to be careful when solving the definite integral, since it
is not possible to solve the indefinite integral and put in the limits, due
to discontinuities in the solution to the indefinite integral. However in the
simulations we only look at the limit between −π + δ and π − δ where the
discontinuities are not present, in which case the solution to the integral
above becomes
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∫ η

η0

1

R2

dη

B · ∇η
=

r

R0ψ′

2
arctan

(√
1−ε
1+ε

tan(η
2
)
)

√
1− ε2

η
η0

(4.74)

which leads to a new expression for ζ,

ζ = φ+
Ir

ψ′R0

√
1− ε2

([η + ε sin(η)]ηη0 − [2 arctan(

√
1− ε
1 + ε

tan(
η

2
))]ηη0)

(4.75)

= φ+ q

[η + ε sin(η)]ηη0 −

[
2 arctan

(√
1− ε
1 + ε

tan(
η

2
)

)]η
η0

 (4.76)

Note that this does not look periodic in 2π in η. That is, however, because
the definite integral from 0 to 2π is not found by evaluating the indefinite
integral in the limits, and when evaluating the definite integral from 0 to 2π
one finds, that it is in fact periodic.

4.4.1 The Contravariant Hamada Metric

We now move on to calculating the Hamada metric before calculating the
field aligned metric.

In order to calculate the contravariant metric elements of the Hamada
coordinates we must first calculate the gradients of the respective coordinates.
Since we work in a circle equilibrium we have, by using the chain rule,

∇x = Jχ′∇ψ = Jχ′ψ′∇r (4.77)

In this section we will be calculating the metric where we use r as the first
coordinate instead of ψ, since later inclusion of the Jχ′ψ′ prefactors when
calculating the field aligned metric is trivial.

For the first angle-like coordinate we get

∇θ = ∇η + ε cos(η)∇η +
1

R0

sin(η)∇r (4.78)
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For the second angle-like coordinate we define a function

f = 2 arctan

(√
1− ε
1 + ε

tan
(η

2

))

for simplicity. This gives

∇ζ = ∇φ−
(
q
∂

∂r
f + f

∂

∂r
q − η ∂

∂r
q − ∂

∂r
(qε) sin(η)

)
∇r (4.79)

−
(
q
∂

∂η
f − (1 + ε cos(η))

)
∇η

It can be shown that the contravariant metric coefficients for a torus are
(see Appendix A for derivation)

grr = 1 (4.80)

gηη =
1

r2
(4.81)

gφφ =
1

R2
(4.82)

where R = R0 + r cos(η), and all the off-diagonal metric components are
zero. We now derive the contravariant Hamada metric coefficients:
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grr = ∇r · ∇r = 1 (4.83)

gθθ = ∇θ · ∇θ = (1 + ε cos(η))2 · 1

r2
+

(
cos(η)

R0

)2

(4.84)

gζζ = ∇ζ · ∇· = 1

R2
−
(
q
∂

∂r
f + f

∂

∂r
q − η ∂

∂r
q − sin(η)

∂

∂r
(qε)

)2

(4.85)

−
(
q
∂

∂η
f − (1 + ε cos(η))

)2

· 1

r2

grθ = ∇r · ∇θ =
cos(η)

R0

(4.86)

grζ = ∇r · ∇ζ = η
∂

∂r
q + sin(η)

∂

∂r
(qε)− q ∂

∂r
f − f ∂

∂r
q (4.87)

gθζ = ∇θ · ∇ζ = − 1

R0

cos(η) · (q ∂
∂r
f + f

∂

∂r
q − η ∂

∂r
q − ∂

∂r
(qε) sin(η))

(4.88)

− 1

r2
(1 + ε cos(η))(q

∂

∂η
f − (1 + ε cos(η)))

Note that gζζ ,grζ and gθζ are not periodic with respect to the poloidal
angle, however this is again because the calculated metric elements only hold
in the range ]− π, π[. We now have the contravariant Hamada metric which
will be a help when deriving the field-aligned contravariant Hamada metric.

4.4.2 The Contravariant Field-Aligned Hamada Met-
ric

In the same way as we calculated the contravariant Hamada metric coeffi-
cients we now calculate the conravariant metric for the field aligned coordi-
nates.

The gradients of eqns. (4.56)-(4.58) are:



4.4. THE CIRCLE EQUILIBRIUM MODEL 49

∇x = J
∂χ

∂ψ

∂ψ

∂r
∇r (4.89)

∇y = ∇θ (4.90)

∇z = ∇ζ − θ ∂
∂r
q∇r − q∇θ (4.91)

where J denotes the Jacobian of the covariant Hamada metric (the real
Hamada metric with the first coordinate being ψ). The Jacobian can be
found by taking the square root of the inverse of the determinant of the
contravariant Hamada metric and gives

J =
rR0

ψ′
(4.92)

which means that

∇x = ψ′∇r (4.93)

From this we can calculate the contravariant metric for the field aligned
Hamada coordinates.

gxx =

(
∂

∂r
Ψ

)2

(4.94)

gyy = gθθ (4.95)

gzz =

(
θ
∂

∂r
q

)2

+ q2gθθ + gζζ + 2qθ
∂

∂r
qgrθ − 2θ

∂

∂r
qgrζ − 2qgθζ (4.96)

gxy =

(
∂

∂r
Ψ

)
grθ (4.97)

gxz =

(
∂

∂r
Ψ

)(
grζ − θ ∂

∂r
qgrr − qgrθ

)
(4.98)

gyz = gθζ − θ
(
∂

∂r
q

)
grθ − qgθθ (4.99)

The Jacobian for the field aligned metric is the same as for the modified
Hamada metric.
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We now have the metric needed for simulations in field-aligned coor-
dinates, which allows us to move on to deriving the modified Hasegawa-
Wakatani equations in field aligned geometry.



Chapter 5

The Hasegawa-Wakatani
Equations

We start this chapter by stating a number of assumptions used on the two-
fluid equations in order to derive a simple set of equations for describing
the evolution of a fusion plasma in three dimensions called the Hasegawa-
Wakatani equations. Part of the solution to the Hasegawa-Wakatani equa-
tions gives rise to drift waves in the direction perpendicular to the magnetic
field [16].

5.1 Assumptions

The assumptions are as follows [16,17]:

Assumption 1 Ti
Te
� 1

The ion temperature is much smaller than the electron temperature and
can hence be neglected.

Assumption 2 β = neTe
B2

2µ0

� 1

We assume that the magnetic field pressure is much larger than the par-
ticle pressure. The plasma is then said to be a low β-plasma.

Assumption 3 E = −∇φ

51
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Pertubations in the density and potential of the plasma lead to pertu-
bations in the magnetic field, however these pertubations are small, so we
assume that we have a static magnetic field, and hence that the electric field
is curl-free.

Assumption 4 k2 � 1
λ2D

where λD is the debye length1. We assume that the wave number for the
drift waves is much larger than the inverse Debye length.

Assumption 5 ne = ni = n

Assumption 4 allows us to assume quasi-neutrality which means that the
density of the electrons and ions is the same.

Assumption 6 n = n0 + n1

The density can be written in terms of a background density and a den-
sity pertubation, where n0 is the background density and n1 is the density
pertubation.

Assumption 7 n0 = N0e
− x
Ln

We assume that the background density is of the form n0 = N0e
− x
Ln in the

edge regions of the plasma, where N0 is a constant and Ln is a characteristic
length scale for the density gradient.

Assumption 8 n1

n0
∼ eφ

Te
∼ ω

ωci
� 1

The relative pertubations in the density, the potential and the ion vortic-
ity are assumed to be small, where ωci = eB

mi
is the ion cyclotron frequency.

This assumption means that

ln(n) ≈ ln(n0) +
n1

n0

Assumption 9 ωt � ωci

1The Debye length is the average length at which a particle in a plasma is ”shielded”,
such that it’s charge approximately cancels with the charges sorrounding it
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Furthermore we assume that the drift wave frequency, ωt, is much smaller
than the gyrofrequency2 and that the dominant drift perpendicular to the
magnetic field is the E ×B-drift and the diamagnetic drift, where the drift
wave frequency is a typical timescale of turbulence.

Assumption 10 k‖ � kx ∼ kz

We assume that the variation of the drift waves is mainly in the perpen-
dicular direction.

Assumption 11 Pσ = nσTσ,

where κ has been included in Tσ. The electrons and ions are assumed to
be an isothermal fluid.

Assumption 12 ui‖ = 0

The fact that the ion mass is much larger than the electron mass allows us
to assume that the ion inertia fixes the ions in the parallel direction, together
with assumption 1 this leads to zero velocity for the ions in the direction of
the magnetic field.

Assumption 13 ∇Tσ
∇n0
� 1

Temperature gradient effects can be neglected.

Assumption 14 The dominant drift is the 0th order drift

We assume that the dominant drift in the perpendicular direction is the
0th order drift i.e. eq. (2.47).

Since we are working in field-aligned coordinates the magnetic field fol-
lows straight lines in the y-direction defined earlier. All differential vector
operators in the following sections denote the operators in curvilinear geom-
etry as defined in the last section of chapter 3.

2For a detailed description of typical plasma frequencies see books such as [9], [6]
and [18]
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5.2 The Electron Fluid

We now derive the Hasegawa-Wakatani equations in the field-aligned coordi-
nates derived in chapter 4 using the above assumptions. We start by looking
at the motion of the electron fluid.

In chapter 2 we derived the two-fluid equations and the fluid drift velocity
in the perpendicular direction. The electron fluid has a velocity both parallel
and perpendicular to the magnetic field, and we can split the velocity of the
electrons in to two terms, such that ue = ue⊥ + ue‖ey. We now need an
expression for the velocity in the direction parallel to the magnetic field. We
recall eq. (4.8) defining the current

J =
∑
σ

nσqσuσ

Now if we take only the parallel component of the current, given by eq.
(4.8), the expression reduces to

J‖ = −neeue‖ (5.1)

due to the neglection of ion velocity in the y-direction (assumption 12).
By now including the electron momentum equation, eq (2.39), and rewrit-

ing it by using the isothermal limit we have

neme
due
dt

= −nee(E + ue ×B)−∇neTe − νeimene(ue − ui) (5.2)

Due to assumption 9 the inertial term of the electron momentum equation
can be neglected, which then leaves us with

E‖ = − 1

nee
∇‖neTe + ηJ‖ (5.3)

where we have introduced the plasma resisitivity, η = νeime
nee2

. Now using
assumption 3 and assumption 11 we can rewrite the parallel current as

J‖ = −Te
ηe

(
1

ne
∇‖ne −∇‖

(
eφ

Te

))
(5.4)
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Recalling eq. (2.47) we can now write the total flow velocity of the elec-
tron fluid3

ue =
E×B

B2
+
∇Pσ ×B

neeB2
− 1

nee
J‖ (5.5)

Taking a look at the electron continuity equation we have, from eq. (2.38),

∂ne
∂t

+∇ · (neue) = 0 (5.6)

The dot product between the diamagnetic drift and the gradient of the
density is zero due to assumption 13, and the divergence of the perpendicular
drifts is zero, so the perpendicular part of the second term on the left hand
side reads

∇ · (neue)⊥ =
E×B

B2
· ∇ne (5.7)

The divergence of the parallel part is given by

∇‖ · (neu‖) = −1

e
∇‖ · J‖ (5.8)

Rewriting the electron continuity equation and using quasi-neutrality we
then have

∂n

∂t
− ∇φ×B

B2
· ∇n =

1

e
∇‖ · J‖ (5.9)

defining the convective derivative in terms of the E × B-drift as D
Dt

=
∂
∂t

+ uE · ∇, the expression is simplified to

D

Dt
n =

1

e
∇‖ · J‖ (5.10)

This equation in combination with the expression for the parallel current
is the first modified Hasegawa-Wakatani equation4.

3The first order drift can be neglected for electrons due to ωce � ωci, however the ions
have a larger mass than electrons

4Modified due to the fact that the original set of equations assume a slab coordinate
system
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5.3 The Ion Fluid

When finding the second equation of the Hasegawa-Wakatani model we uti-
lize the assumption that the ions are cold, thus enabling us to neglect the
diamagnetic drift and the drift parallel to the magnetic field. The only re-
maining 0th order drift is then the E×B-drift. The first order drift for the
ions is given by eq. (2.48) as

ui = − mi

eB2

(
∂t −

(
∇φ×B

B2
· ∇
))
∇φ− ∇φ×B

B2
(5.11)

Taking a look at the ion continuity equation, eq. (2.38), and plugging in
the ion velocity we get

− 1

Bωci

(
∂t −

∇φ×B

B2
· ∇
)
∇2φ =

−∂tn+

(
∇φ×B

B2
+

1

Bωci

(
∂t −

∇φ×B

B2
· ∇
)
∇φ
)
· ∇n (5.12)

the 1
Bωci

(
∂t − ∇φ×BB2 · ∇

)
∇φ term on the right hand side, also called the

polariazation drift, is much smaller than the E×B-drift due to assumption
14 and can be neglected. Introducing the convective derivative on both sides,
and substituting eq. (5.10) in to the right hand side we get

D

Dt

∇2φ

Bωci
=

1

en
∇‖ · J‖ (5.13)

This is the second Hasegawa-Wakatani equation. We now have a set of
closed partial differential equations.

5.4 Normalizing the Hasegawa-Wakatani equa-

tions

When running simulations it is often convenient to normalize the equations.
In order to normalize the Hasegawa-Wakatani equations, eq. (5.10) and eq.
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(5.13), it is convenient to rewrite them. We start by using assumption 6 and
using assumption 7 to rewrite the parallel current, eq. (5.4), to

J‖ = −Te
ηe

(
∇‖
(

ln(n0) +
n1

n0

)−∇‖(
eφ

Te

))
(5.14)

where we have used ∇ ln(n) = 1
n
∇n. Using assumption 8, the expression

for the current simplifies to

J‖ = −Te
ηe

(
∇‖
(
n1

n0

)
−∇‖

(
eφ

Te

))
(5.15)

We now move on to rewriting the electron fluid eqaution (eq. (5.10)).
Dividing eq. (5.10) by n on both sides gives

1

n

D

Dt
n =

1

ne
∇‖J‖ (5.16)

writing n = n0 + n1 and using once again that ∇ ln(n) = 1
n
∇n we have

D

Dt
ln(n0 + n1) =

1

e(n0 + n1)
∇‖J‖ (5.17)

using assumption 8 we can write

1

en0(1 + n1

n0
)
≈ 1

en0

(5.18)

and

D

Dt

(
ln(n0) +

n1

n0

)
=

1

en0

∇‖ · J‖ (5.19)

Eq. (5.13) can in the same way be rewritten to

D

Dt

∇2φ

Bωci
=

1

en0

∇‖ · J‖ (5.20)
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Using the rewritten equations we now start the normalization. We intro-
duce the normalized quantities

l̃ =
l

ρs
, t̃ = ωcit, φ̃ =

eφ

Te
, ñ =

n1

n0

, ∇̃ = ρs∇

where l denotes any length parameter and ρs =
√
Temi
eB

is the ion gyroradius
at the electron temperature Te. Plugging this in to the Hasegawa-Wakatani
equations (eqns. (5.19) and (5.20)) and utilizing that ∂tn0 = 0 and adding
a diffusion and viscosity term [17] to them, we end up with the normalized
Hasegawa-Wakatani equations

(∂̃t + ũE · ∇̃)ñ+ ũE · ∇̃(ln(n0)) = C∇̃‖ · ∇̃‖(ñ− φ̃) + µ∇̃2n (5.21)

(∂̃t + ũE · ∇̃)∇̃2φ̃ = C∇̃‖ · ∇̃‖(ñ− φ̃) + µ∇̃4φ̃ (5.22)

where

C =
Te

ηe2n0ωciρ2s
(5.23)

This normalization, however, also means that we must normalize the
metric elements used in the differential operators. Utilizing that in the large
aspect ratio limit we have I ≈ R0B0 [11,13], we have as an expression for ψ′:

ψ′ =
rB0

q
√

1− ε2
. (5.24)

The safety factor is unitless, and the SI units of ψ′ is then tesla times
metres. This leads to the normalization

gxx = ∇x · ∇x = ρ2sB
2
0 g̃

xx (5.25)

gyy = ∇y · ∇y =
1

ρ2s
g̃yy (5.26)

gzz =
1

ρ2s
g̃zz (5.27)

gxy = B0g̃
xy (5.28)

gxz = B0g̃
xz (5.29)

gyz =
1

ρ2s
g̃yz (5.30)
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We now have a set of normalized, closed partial differential equations.
The next step is to analyze the dynamics of the system described by the
equations, and this is done by simulations using the BOUT++ platform.



60 CHAPTER 5. THE HASEGAWA-WAKATANI EQUATIONS



Chapter 6

Simulations of the
Hasegawa-Wakatani System

In this chapter we carry out simulations of the Hasegawa-Wakatani equations
in our field-aligned system and define the numerical values for the field-
aligned metric.

6.1 The Metric

The metric used in the simulations is the same as the circle equilibrium metric
derived in chapter 4. We use the local approximation, which means that all
r-dependencies are held constant while still including derivatives with respect
to r, such that for instance q(r) = Const and ∂q

∂r
= Const 6= 0. This leaves

us with metric components that are only functions of the y-parameter.
In order to carry out the simulations we create a so-called grid file, which is

a file including all necessary information about the coordinates. The spacing
between each field-aligned coordinate and its neighbour is the same every-
where, which means the spacing is equidistant.1

In the metric there are several η-dependencies which we want expressed
as funtions of y. However y = θ = η + ε sin(η), so finding an analytical
expression for η in terms of y is not straightforward. This is solved by adding
an iterative newton solver [19] in the grid file created. The solver finds the
values of η for which y − η − ε sin(η) = 0 with equidistant gridspacing in y.
In figure 6.1 we see how η is shifted with respect to θ when ε = 0.125.

1For a detailed description of the finite difference methods used in BOUT++ see [12]

61
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Figure 6.1: η plotted against θ

In our metric we assume q(r) to be proportional to r2, while requiring
that q is still unitless.

For the simulations carried out in this chapter we have looked at a small
Tokamak with a major radius of R0 = 1 m and a minor radius of r ≈ 0.125
m.

Table 6.1: Values for the metric

symbol value
Lowest value for the minor radius rmin 0.1 m
Highest value for the minor radius rmax 0.15 m
Average and assumed value for the minor radius r0 0.125 m
Major radius R0 1 m

The safety factor as a function of r q 2 + 7 r
R0

+ r2

R2
0

The derivative of the safety factor with respect to r q′ 7
R0

+ 2 r
R2

0

In table 6.1 all values used to derive the field-aligned metric used in the
simulations performed in this chapter can be seen.

Plugging the values from table 6.1 into the metric elements of eqns.
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Figure 6.2: The metric coefficients of the field-aligned coordinates as func-
tions of y
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Figure 6.3: The metric coefficients depending on q′ as functions of y

(4.94)-(4.99) gives figure 6.2. All the metric coefficients are shown as func-
tions of y in the range y =]−π, π[. As seen, the metric elements containing z
derivatives are not necessarily periodic nor continuous. The non-periodicity
is due to the shift by qθ in the z-direction (eq. (4.58)) and the discontinuity
is due to the discontinuous nature of the integral calculated for the ζ Hamada
coordinate (eq. (4.74)). Furthermore note that the three z-dependent met-
ric elements are highly dependent on the derivative of the safety factor with
respect to r, in fact if we have q′ = 0 all the metric elements end up periodic
as seen in figure 6.3.

With our evaluation of the field-aligned metric complete we are now able
to move on to a simple test simulation of the metric involving diffusion in
the ∇y-direction.
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6.2 Simple Diffusion

In this short section we simulate the behaviour of simple diffusion parrallel to
the magnetic field in the case of a rational q, and in the case of an irrational
q.

The diffusion equation evaluated is simply

∂tN = D‖∇2
‖N (6.1)

where N is a particle density, and D‖ is a constant.
Due to the shift in the z-coordinate being by 2πqθ as seen in eq. (4.58)

and the pseudo-periodicity expressed by eq. (4.60) we should see that for a
rational q a magnetic field line will eventually close in on itself, where for an
irrational q, the magnetic field line will never close in on itself, resulting in a
magnetic field line covering a whole surface. This means that looking at two
field lines for a choice of rational q with a different density on each field line,
there should be no diffusion between the two field lines, where the opposite
should be the case for an irrational choice of q.

Figure 6.4 shows diffusion at three different times with a diffusion constant
of D‖ = 1000 and with a rational choice of q. The density is distributed, such
that each field line has a constant density different from the other field line.
As seen from the plots there is no diffusion from one field line to the other,
just as expected.

Figure 6.5 shows diffusion at three different times with a diffusion constant
of D‖ = 1000 and with an irrational choice of q and a distribution of density,
such that each field line has a constant density different from the other field
line. As expected the density evens out among the two field lines.

6.2.1 Cross-section and Interpolation

When investigating data it is often convenient to look at 2-dimensional cross
sections with one coordinate held fixed. Imagine we want to look at a cross
section of the data in toroidal coordinates at φ = 0. If the simulation was
done in a toroidal coordinate system with an equidistant grid, this would
be straightforward, however, our simulations were done in a non-toroidal
system, and the gridpoints are thus not necessarily uniformly distributed
along a constant φ-plane. However there are various ways to interpolate
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data down to the poloidal plane in a toroidal geometry, and we simply use
pythons built-in interpolator when processing the data2.

In order to get results in a more visualizable coordinate system we map
the data back to toroidal coordinates. We have a one-to-one map of the three
field-aligned coordinates to toroidal coordinates, such that (xfa, yfa, zfa) →
(r, η, φ), using the values for the toroidal coordinates in terms of the field-
aligned coordinates we are able to map back to toroidal coordinates. This
has been utilised in a simulation run using a 32x64x36 grid, with an initial
distribution in the z-direction given by the function N0 = 1 + sin( z

2
) in the

range ] − π, π[ for z, with diffusion in the y-direction, an irrational q and
D‖ = 1000. Figure 6.6 shows the simulations for a cross section at φ = 0 and
φ = π, where φ is the toroidal angle, at times 10 s, 4000 s and 20000 s. The
figure shows that with time the density is evenly distributed as expected.

These simple diffusion tests have shown that the metric inputs behave as
expected and that the results given in the field-aligned coordinates can be
mapped back to a toroidal system, which validates our metric and numerical
implementation.

2While the simulations where done using C++ and the BOUT++ [14] platform, the
post processing was done in Python
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(a)

(b)

(c)

Figure 6.4: X, Y and Z in metres. At times t = 20 s, t = 800 s and t = 4000
s with q = 2
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(a)

(b)

(c)

Figure 6.5: X, Y and Z in metres. At times t = 20 s, t = 800 s and t = 4000
s with q = π
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6: Diffusion along field lines at two different φ cross sections. At
times t = 10 s, t = 4000 s, t = 20000 s from top to bottom and q = π
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6.3 The Dispersion Relation and Unstable Modes

In order to investigate the growth rate of unstable modes it is convenient
to look at the linearized limit of the Hasegawa-Wakatani equations. Doing
this in a slab geometry is straightforward and gives a dispersion relation,
however it is not straightforward in the field-aligned geometry used for the
simulations performed in this chapter. Due to the complexity of the curvi-
linear coordinates we restrict our investigation to a slab geometry. This will
give an indication of the growth-rates of the different modes in curvilinear
geometry3. Slab geometry is defined as a cartesian coordinate system with y
as the magnetic field axis4.

When we assume that the geometry is a slab, the term uE · ∇n0 can be
rewritten to [16]

uE · ∇n0 =
1

LnB0

∂

∂z
φ (6.2)

The linearized Hasegawa-Wakatani equations are then [18]

∂tn+ ∂zφ = −C∂2y(φ− n) + µ∇2
⊥n (6.3)

∂t∇2
⊥φ = −C∂2y(φ− n) + µ∇4

⊥φ (6.4)

where C is given by

C =
TeLn

ηe2n0ωciρ3s
(6.5)

where the perpendicular length scales are normalized with ρs and the par-
allel length scales are normalized with Ln. The reason for this normalization
is the different typical length scales perpendicular to the magnetic field and
along the magnetic field.

Assuming plane wave solutions to eqns (6.3)-(6.4) and ignoring electron
viscosity gives the dispersion relation [18]

3Things like magnetic shear, etc. are not included
4usually z, but BOUT++ uses y
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ω2 + iω

(
Ck2y

(
1 +

1

k2⊥

)
+ µk2⊥

)
− Ck2y

(
i
kz
k2⊥

+ µk2⊥

)
= 0 (6.6)

In the limit where C → ∞ we get

ω =
kz

1 + k2⊥
− i µk4⊥

1 + k2⊥
(6.7)

The limit where C → 0 gives

ω = −iµk2⊥, 0 (6.8)

We see that both limits have a net negative of the imaginary parts, which
results in a damping of the unstable modes [18]. This means that we have a
stable solution in both limits, and furthermore that the limit where C → ∞
simply gives the standard result for drift waves in the z-direction [18].

The solution to the total dispersion relation is found to be

ω =
−i(Ck2yk⊥ + µk3⊥ + Ck2y)

2k⊥
(6.9)

±
√
−k4y(k⊥ + 1)2C2 + 2k2yC(k4⊥µ− k3⊥µ)− µ2k6⊥ + 4k2yCiω∗

2k⊥

As seen the solution includes two branches, however the branch with
=(ω) < 0 is damped out by the negative imaginary part while the other
branch is unstable, and drives the instabilities [18]. With C = 1, µ = 0 and
kx = 0, we plot the dispersion relation for the unstable branch (=(ω) > 0) ,
which is illustrated in figure 6.7.

To better illustrate the growth-rate dependencies on k, we have plotted
the cross sections of the imaginary frequency illustrated in figure 6.7 and in
figure 6.8. As seen in the figure, the imaginary part (blue line) has a peak at
a lower wave number for higher C, and a faster decay after the peak. However
for low C the peak of the imaginary part is at a lower frequency. This means
that the peaks of both the real and imaginary parts go to zero for C → 0, and
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Figure 6.7: A contourplot of the imaginary part of the dispersion relation at
C = 1 and µ = 0, with a logarithmic scale
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the peak of the imaginary part goes to zero as C → ∞. The growth rate for
the unstable modes is seen to have the maximum peak value around C = 1.

Figure 6.9 shows the maximum frequency of the imaginary part of the
perpendicular wave number, k⊥, decaying fast for higher values of C. For
C → 0 the peak of both the real and the imaginary part goes to zero resulting
in a stable solution.

Whilst this mainly tells us something about the Hasegawa-Wakatani model
in a slab geometry, the results for a curvilinear geometry should be similar,
with the drift wave instabilities peaking at a finite C.
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(a)

(b)

(c)

(d)

Figure 6.8: The dispersion relation at k⊥ = 4 for (a) C = 0.1, (b) C = 0.5,
(c) C = 1 and (d) C = 10
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(a)

(b)

(c)

(d)

Figure 6.9: The dispersion relation at k‖ = 4 for (a) C = 0.1, (b) C = 0.5,
(c) C = 1 and (d) C = 10
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6.4 Numerical Simulations of The Hasegawa-

Wakatani Model

With a theoretical idea of the stability of the Hasegawa-Wakatani equations,
we now move on to analyze the results of simulations performed using the
Hasegawa-Wakatani model in field-aligned coordinates. The simulations are
investigated using three different values of magnetic shear (magnetic shear
is defined as s = r

q
∂q
∂r

). We expect to see a dampening effect of the unstable

modes in the system for high values of magnetic shear [20], which should also
result in a net dampening of the total kinetic energy.

We define the total kinetic energy of the system [16]

E = Ekin =
1

2

∫ ∫ ∫
((∇φ)2)dxdydz (6.10)

where we use the numerical approximation

∫ ∫ ∫
(f)dxdydz ≈ 1

NxNyNz

∑
x,y,z

f (6.11)

where Ni denotes the number of grid points in the i-direction. It can be
shown that the background density gradient (uE · ∇ ln(n0)) acts as a source
term for the energy of the system [16].

6.4.1 Numerical Simulations With Magnetic Shear

The value of C can be calculated for specific values of electron temperature,
ωci, n0 and η. The given values can be seen on table 6.2

Recalling that

C =
Te

ηe2n0ωciρ2s

we get a value of C = 356000.
For our initial value at t = 0 we use an initial spread in vorticity given by

the function 0.0001(mixmode(y) ·mixmode(z) ·mixmode(2πx)), where the
mixmode function is a mixture of fourier modes on the form [12]
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Table 6.2: Values used for the simulation

symbol value
Particle background number density n0 1019

Electron temperature Te 100 eV
The ion cyclotron frequency ωci 47904191 s−1

The plasma resisitivity η 1.7 · 10−6

The ion larmor radiues at electron temperature Te ρs 0.0014 m
The electron charge e 1.6 · 10−19 C
The background magnetic field B0 1 T

mixmode(x) =
14∑
i=1

1

(1 + |i− 4|)2
cos[ix+ φ], (6.12)

where φ is a random phase between -π and π. The boundaries in the y-
and z-directions are periodic and on the x-coordinates boundaries we impose
dirichlet boundaries5 [19] of values 0. The same boundaries are applied to the
normalized density n. The grid used is an equidistant 66×16×512 grid using
the field-aligned coordinates derived in chapter 4, with input parameters for
the metric and coordinates given in table 6.1. The timestep used was t̃ = 100
corresponding to t = 100

ωci
. The background density gradient was set to be

∇(log(n0)) = ∇(−1 · x).
Figure 6.10 shows the total normalised kinetic energy in the system as

a function of time with and without kinetic energy in the parallel direction.
As seen from the plot the kinetic energy in the parallel direction contributes
with almost nothing, which means the drift waves and turbulence mainly
results in motion perpendicular to the magnetic field.

At approximately t̃ = 800 the kinetic energy of the system starts growing
exponentially up untill approximately t̃ = 8700. In this region the kinetic
energy is concentrated in the stable wave numbers, with a resulting drift in
the z-direction. A snapshot during this time period at a cross section of
y = 0.25π can be seen in figure 6.11.

5For the finite difference methods used in BOUT++ see [19] and [12]
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Figure 6.10: The kinetic energy as a function of time.
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Figure 6.11: The normalized values for n, φ ,∇2φ and J‖ at time t̃ = 6000

with ∂q
∂r

= 7.25
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The period from time t̃ = 8700 and onward denotes the state of the
system where the total kinetic energy of the system is saturated. In the
saturated state the system becomes turbulent and random oscillations in the
total kinetic energy are observed. Figure 6.12 shows a snapshot during the
start of the turbulent time period at a cross section of y = 0.25π. Figure
6.13 shows a snapshot well into the turbulent time period at a cross section
of y = 0.25π. As seen in figure 6.13 it seems that φ goes in to a state with
elongated modes late in the turbulent time period.

As mentioned earlier the magnetic shear is expected to have a positive
influence on the stability of the system. In order to investigate this influence,
we compare these results to a system with no magnetic shear and a system
with stronger magnetic shear.
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Figure 6.12: The normalized values for n, φ ,∇2φ and J‖ at time t̃ = 10600

with ∂q
∂r

= 7.25
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Figure 6.13: The normalized values for n, φ ,∇2φ and J‖ at time t̃ = 35000

with ∂q
∂r

= 7.25
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Figure 6.14: The kinetic energy as a function of time.

Comparisons with no magnetic shear

In this subsection we investigate the case where no magnetic shear is present,
that is we set ∂q

∂r
= 0, whilst not changing any other parameters. What we

expect is a less stable Hasegawa-Wakatani system, that reaches a saturated
state faster than a Hasegawa-Wakatani system with shear. We also expect
higher total kinetic energy in the saturated state due to more unstable mo-
tion.

Figure 6.14 shows the total normalized kinetic energy of the system with
no shear. At approximately t̃ = 800 the kinetic energy of the system starts
growing exponentially up untill approximately t̃ = 8000. Compared to the
previous simulation it reaches the saturated state a bit faster. By zooming
in at time t̃ = (30000− 45000) for the total kinetic energy with and without
magnetic shear we get figures 6.15 for no magnetic shear, and figure 6.16 for
the case with magnetic shear. It is quite clear that the total kinetic energy
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Figure 6.15: The kinetic energy as a function of time.

in the saturated state in the case with no magnetic shear is larger.
Figure 6.17 shows the system with no shear at time t̃ = 6000 and y =

0.25π. Comparing figure 6.17 with figure 6.11 it is seen that the density
profile, the electric potential and the vorticity is shifted in the z-direction for
higher r when magnetic shear is present, whereas it is not shifted in the case
without magnetic shear.

Figure 6.18 shows the system with no magnetic shear at the initial state
of the turbulent time period and figure 6.19 shows the same system well into
the turbulent time period, both at y = 0.25π. Compared to the system with
shear, φ does not seem to form the same elongated modes.
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Figure 6.16: The kinetic energy as a function of time.
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Figure 6.17: The normalized values for n, φ ,∇2φ and J‖ at time t̃ = 6000

with ∂q
∂r

= 0
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Figure 6.18: The normalized values for n, φ ,∇2φ and J‖ at time t̃ = 10600

with ∂q
∂r

= 0
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Figure 6.19: The normalized values for n, φ ,∇2φ and J‖ at time t̃ = 35000

with ∂q
∂r

= 0
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Figure 6.20: The kinetic energy as a function of time.

Comparison with strong magnetic shear

We now move on to investigate the case with strong magnetic shear where
∂q
∂r

= 25.25. The other values used for the simulation are the same as for the
case with no magnetic shear, and the case with weaker magnetic shear.

Figure 6.20 shows the total normalized kinetic energy of the system with
strong magnetic shear. At approximately t̃ = 800 the kinetic energy of the
system starts growing up untill approximately t̃ = 27000. This is a significant
difference from the case with no magnetic shear and the case with weaker
magnetic shear. Furthermore the saturation level of the total normalized
kinetic energy is a factor 10 lower than in the previous cases examined. The
fluctuations in the kinetic energy in the saturated state are much less frequent
than in the case with no magnetic shear and the case with weaker magnetic
shear.

Figure 6.21 shows the system in the drift wave time period at y = 0.25π.
The shear is clearly seen in the density profile, the vorticity and the electric
potential.
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Figure 6.21: The normalized values for n, φ ,∇2φ and J‖ at time t̃ = 10600

with ∂q
∂r

= 25.25
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Figure 6.22: The normalized values for n, φ ,∇2φ and J‖ at time t̃ = 35000

with ∂q
∂r

= 25.25
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Figure 6.22 shows the system in the turbulent time period at y = 0.25π
the elongated modes in the electric potential are even more visible now.

It is clear that the magnetic shear has a stabilizing effect on the system
and this can be utilized when building a fusion plasma device.



Chapter 7

Conclusion

In order to accurately describe a fusion plasma 3D effects of the magnetic
field must be taken in to account. A 3D model using a coordinate system
aligned with the magnetic field takes these effects in to account and leads
to high resolution of the effects with a coarse grid in the magnetic field line
direction.

To create a 3D model of a fusion plasma the shape of the magnetic field
was described in detail, from which a coordinate system aligned with the
magnetic field was derived. A metric, involving all necesarry information
about the magnetic field structure, was created from the field-aligned co-
ordinates. The Hasegawa-Wakatani model was then investigated using the
field-aligned coordinate system.

A simple diffusion test was carried out in order to validate the model and
prove the ability of mapping the results in field-aligned coordinates back to
a toroidal coordinate system.

Simulations involving three different cases of the derived equations were
investigated using the BOUT++ [14] platform for writing the code, one with
a magnetic shear of ∂q

∂r
= 7.25, one with no shear and one with a shear of

∂q
∂r

= 25.25. Significant differences were seen, where the magnetic shear was
shown to have a stabilizing effect on the system.

The 3D model showed promising results as a basis for future simulations
in three dimensions.
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7.1 Future Prospects

Creating a coordinate system aligned with the magnetic field is a complicated
and tedious affair, however with this succesfully done, and immediate effects
resulting from the properties of the magnetic field seen, the 3D model created
in this thesis seems to be a great basis for future work using a field aligned
system.

The model investigated in this thesis was the simplified Hasegawa-Wakatani
model which includes assumptions such as zero ion temperature, which does
not necesarrily hold in real fusion devices. Future works may be done using
more complex systems involving finite ion temperature and other neglected
effects, such as temperature gradients and parallel ion velocity.

During the simulations, the local approximation was used, which only
holds for flat gradients or a very thin slab in the r-direction. Future works
may want to include global effects of r and a first step could be to investigate
the differences between a model using the local approximation and a global
model.

The 3D model used for the simulations assumed a circle equilibrium solu-
tion to the Grad-Shafranov equation in order to have an analytical expression
for the field-aligned metric. However this holds an inconsistency of O(ε) with
ε = r

R0
and future works may set out to investigate more complex models

with more realistic solutions to the Grad-Shafranov equation.



Appendix A

Toroidal Metric Coefficients

Using the Cartesian metric where

gxx = 1 (A.1)

gyy = 1 (A.2)

gzz = 1 (A.3)

and the off-diagonal terms are 0 it is pretty straightforward to determine
the metric for a toroidal coordinate system. Defining the coordinates we
have:

x = (R0 + r cos(η)) sin(φ) (A.4)

y = (R0 + r cos(η)) cos(φ) (A.5)

z = r sin(η), (A.6)

where x, y and z are the usual Cartesian coordinates, R0 is the major
radius, r is the minor radius, η is the poloidal angle and φ is the toroidal
angle.

Writing the set of toroidal coordinates in terms of cartesian coordinates
we solve the three equations with three unknowns.

φ = arcsin(
x

R0 + r cos(η)
) (A.7)

so
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y = (R0 + r cos(η)) cos(arcsin(
x

R0 + r cos(η)
)) (A.8)

using

cos(arcsin(x)) =
√

1− x2 (A.9)

we have

y = (R0 + r cos(η))

√
1− x2

(R0 + r cos(η))2
(A.10)

=
√

(R0 + r cos(η))2 − x2 ⇒ (A.11)

y2 = (R0 + r cos(η))2 − x2 ⇒ (A.12)

r cos(η) =
√
x2 + y2 −R0 ⇒ (A.13)

η = arccos(

√
x2 + y2 −R0

r
). (A.14)

This allows us to find a solution for r using eq. (A.6) and the rule given
in eq. (A.9):

r =
z√

1− (

√
x2+y2−R0

r
)2
⇒ (A.15)

r2 = z2 + (
√
x2 + y2 −R0)

2 (A.16)

we then plug in to the equation for η and have

η = arccos(

√
x2 + y2 −R0√

z2 + (
√
y2 + x2 −R0)2

) (A.17)

which then gives for φ

sin(φ) =
x√

x2 + y2
. (A.18)
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We now find the gradient of the resulting expressions. Taking the gradient
on both sides of r2 we have

2r∇r = 2zẑ +
2(
√
x2 + y2 −R0)y√
x2 + y2

ŷ +
2(
√
x2 + y2 −R0)x√
x2 + y2

x̂ (A.19)

Taking the gradient on both sides for cos(η) we have

− sin(η)∇η =
xz2x̂+ yz2ŷ + (

√
x2 + y2 −R0)z

√
x2 + y2ẑ

(z2 + (
√
y2 + x2 −R0)2)

3
2

√
x2 + y2

(A.20)

Finally taking the gradient on both sides of sin(φ) gives

cos(φ)∇φ =
y2x̂+ xyŷ

(x2 + y2)
3
2

(A.21)

The derived expressions allows us to derive the metric of the torusoidal
geometry. Using

gij = ∇ui · ∇uj (A.22)

we have

grr = ∇r · ∇r =
z2

r2
+

(y2 + x2)

r2

(
(
√
x2 + y2 −R0)

2

x2 + y2

)
(A.23)

= sin2(η) +
(R0 + r cos(η))2

r2

(
(r cos(η))2

(R0 + r cos(η))2

)
= 1

and

gηη =
1

sin2(η)

(
(x2 + y2)(z4 + (

√
x2 + y2 −R0)

2z2)

(x2 + y2)(z2 + (
√
x2 + y2 −R0)2)3

)
(A.24)

= r2
(

1

(r2 sin2(η) + r2 cos2(η))2

)
=

1

r2
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and for the last non-zero metric element we have

gφφ =
1

cos2(φ)

(
y2(x2 + y2)

(x2 + y2)3

)
(A.25)

=
1

R2
,

where R = R0 + r cos(η) and the Jacobian is 1
rR

.



Appendix B

Useful Vector Identities

In this section a list of useful vector identities is stated.
Vector dot product:

∇(A ·B) = (A · ∇)B + (B · ∇)A + A× (∇×B) + B× (∇×A) (B.1)

Vector cross product

∇ · (A×B) = (∇×A) ·B−A · (∇×B) (B.2)

∇× (A×B) = A(∇ ·B)−B(∇ ·A) + (B · ∇)A− (A · ∇)B (B.3)

The vector triple product

A× (B×C) = (A ·C) B− (A ·B) C (B.4)

(A×B)×C = (A ·C) B− (B ·C) A (B.5)

The divergence of a scalar and a vector

∇ · (ψA) = ψ∇ ·A + A · ∇ψ (B.6)

The curl of a scalar and a vector

∇× (ψA) = ψ∇×A +∇ψ ×A (B.7)
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